Nuclear structure studies with proton-induced QFS reactions

Valerii Panin, GSI Darmstadt

EEiif $R^{3} B$

QFS as a proton-induced knockout reaction

What we observe

Initial state
Final state

- Relativistic proton-nucleus collision
- Initial state of A is "destroyed"
- New particle X is generated in the final state
- Complex many-body problem
$X=$ proton, neutron, deuteron, alpha, ...

QFS as a proton-induced knockout reaction

What we observe

Initial state

- Relativistic proton-nucleus collision
- Initial state of A is "destroyed"
- New particle X is generated in the final state
- Complex many-body problem

What we think is happening

- Simple 2-body interaction: elastic scattering off a virtual constituent X^{\star}
- Proton and X freely escape the nucleus
- $\left(A-X^{*}\right)$ spectator with a "hole" \rightarrow linked to the initial SP state in A
$X=$ proton, neutron, deuteron, alpha, ...

$$
\frac{d^{4} \sigma}{d E_{p} d E_{X} d \Omega_{p} d \Omega_{X}}=K \frac{d \sigma_{p X}}{d \Omega} S_{\epsilon}\left(\mathbf{Q}_{X}\right)
$$

QFS as a proton-induced knockout reaction

What we observe

Initial state

- Relativistic proton-nucleus collision
- Initial state of A is "destroyed"
- New particle X is generated in the final state
- Complex many-body problem
$X=$ proton, neutron, deuteron, alpha, ...

What we think is happening

- Simple 2-body interaction: elastic scattering off a virtual constituent X^{\star}
- Proton and X freely escape the nucleus
- $\left(A-X^{\star}\right)$ spectator with a "hole" \rightarrow linked to the initial SP state in A

$$
\frac{d \sigma_{p X}}{d \Omega}<S_{\epsilon}\left(Q_{X}\right)<A-X^{*}\left|a_{X}\right| \mathrm{A}>
$$

NN cross sections and QFS energy regime

pp observable d $\sigma / \mathrm{d} \Omega$ at $\mathrm{T}_{\text {lab }}=300.0 \mathrm{MeV}$
ESC96 potential

```
Suitable energy for QFS studies:
100-500 MeV
```

$\mathrm{T}_{\text {kin }}=400 \mathrm{MeV}: \frac{\sigma_{p p}}{\sigma_{p n}} \approx 1.27$
Mean free-path ($\rho=0.15 \mathrm{fm}^{-3}, \sigma_{\mathrm{f}}=25 \mathrm{mb}$):
$\Lambda=\frac{1}{\rho \sigma_{f}} \approx 2.7 \mathrm{fm}$
$R_{r m s}\left({ }^{12} C\right) \approx 2.45 \mathrm{fm}$

QFS reactions for nuclear structure studies

(p,2p) and (p,pn)

- Spectroscopy of valence and deeply-bound SP states
- Evolution of shell structure in asymmetric nuclei
- Study of spatial n-n correlations in nuclear halo
- Study of fission barriers in heavy nuclei
- Probing short-range correlations: e.g. (p,2p+n)
($\mathrm{p}, \mathrm{p}^{4} \mathrm{He}$):
- Cluster structure of light nuclei
- Alpha-clustering near surface of heavy nuclei
- Study of correlated multi-neutron systems
(p, $p^{2 H}$)
- Study of p-n pairing and correlations (see talk of Marina Petri)

QFS reactions for nuclear structure studies

(p,2p) and (p,pn)

- Spectroscopy of valence and deeply-bound SP states
- Evolution of shell structure in asymmetric nuclei
- Study of spatial n-n correlations in nuclear halo

- Study of fission barriers in heavy nuclei
- Probing short-range correlations: e.g. (p,2p+n)
($\mathrm{p}, \mathrm{p}^{4} \mathrm{He}$):
- Cluster structure of light nuclei
- Alpha-clustering near surface of heavy nuclei
- Study of correlated multi-neutron systems
($\mathrm{p}, \mathrm{p}^{2 H}$)
- Study of p-n pairing and correlations (see talk of Marina Petri)

QFS reactions for nuclear structure studies

($p, 2 p$) and ($p, p n$)

- Spectroscopy of valence and deeply-bound SP states
- Evolution of shell structure in asymmetric nuclei
- Study of spatial n-n correlations in nuclear halo

- Study of fission barriers in heavy nuclei
- Probing short-range correlations: e.g. (p,2p+n

- Alpha-clustering near surface of heavy nuclei
- Study of correlated multi-neutron systems
($\mathrm{p}, \mathrm{p}^{2 H}$)
- Study of p-n pairing and correlations (see talk of Marina Petri)
M. Duer et al. Nature 606, 678 (2022)

Probing single-particle states in ($p, 2 p$) and ($p, p n$) experiments in direct kinematics
G. Jacob, T.A. Maris, Rev. Mod. Phys. 38, 121 (1966)

Probing single-particle states in ($p, 2 p$) and ($p, p n$) experiments in direct kinematics
G. Jacob, T.A. Maris, Rev. Mod. Phys. 38, 121 (1966)

pure 1s state!

Probing single-particle states in ($p, 2 p$) and ($p, p n$) experiments in direct kinematics
G. Jacob, T.A. Maris, Rev. Mod. Phys. 38, 121 (1966)

S.S. Volkov et al., Journal of Nuclear Physics, 52, 5(11), 1990

Probing single-particle states in ($p, 2 p$) and ($p, p n$) experiments in direct kinematics
G. Jacob, T.A. Maris, Rev. Mod. Phys. 38, 121 (1966)

S.S. Volkov et al., Journal of Nuclear Physics, 52, 5(11), 1990

Probing single-particle states in ($p, 2 p$) and ($p, p n$) experiments in direct kinematics
G. Jacob, T.A. Maris, Rev. Mod. Phys. 38, 121 (1966)

S.S. Volkov et al., Journal of Nuclear Physics, 52, 5(11), 1990

${ }^{40} \mathrm{Ca}(\mathrm{p}, \mathrm{pn}){ }^{39} \mathrm{Ca}$

Inverse kinematics QFS experiments

Inverse kinematics QFS experiments

SEASTAR / MINOS experiment SAMURAI: ${ }^{53} \mathrm{~K}(\mathrm{p}, 2 \mathrm{p}){ }^{52} \mathrm{Ar} @ 210 \mathrm{MeV} / \mathrm{u}$
H.N. Liu et al., Phys. Rev. Lett. 122, 072502 (2019)

Doppler-corrected gamma spectrum from ${ }^{53} \mathrm{~K}(\mathrm{p}, 2 \mathrm{p}){ }^{52} \mathrm{Ar}$

Neutrons

- Beam energy: @ $210 \mathrm{MeV} / \mathrm{u}$
- 15 cm LH2 target
- Beam intensity: ~ 1particle per second!
- Highest 21^{+}state in Ar isotopes with $\mathrm{N}>20$
= Persistence of $\mathrm{N}=34$ sub-shell closure below $\mathrm{Z}=20$

GSI experiment: ${ }^{17 \mathrm{Ne}(p, 2 p))^{16} \mathrm{~F}^{*} \rightarrow{ }^{15} \mathrm{O}+\mathrm{p} @ 500 \mathrm{MeV} / \mathrm{u}, ~}$
is ${ }^{17} \mathrm{Ne}$ a real 2 p -halo system at the proton dripline?
Shell model view of ${ }^{17} \mathrm{Ne}$

GSI experiment: ${ }^{17} \mathrm{Ne}(\mathrm{p}, 2 \mathrm{p})^{16} \mathrm{~F}^{*} \rightarrow{ }^{15} \mathrm{O}+\mathrm{p} @ 500 \mathrm{MeV} / \mathrm{u}$
is ${ }^{17} \mathrm{Ne}$ a real 2 p -halo system at the proton dripline?
Shell model view of ${ }^{17} \mathrm{Ne}$

GSI experiment: ${ }^{12} \mathrm{C}(\mathrm{p}, 2 \mathrm{p})^{11} \mathrm{~B} @ 400 \mathrm{MeV} / \mathrm{u}$ in inverse kinematics

GSI experiment: ${ }^{12} \mathrm{C}(\mathrm{p}, 2 \mathrm{p}){ }^{11} \mathrm{~B} @ 400 \mathrm{MeV} / \mathrm{u}$ in inverse kinematics

Narrow peak in polar-azimuthal space $->$ distinct QFS signature

$\cos \theta_{o}=\sin \vartheta_{1} \sin \vartheta_{2} \cos \left(\varphi_{2}-\varphi_{1}\right)+\cos \vartheta_{1} \cos \vartheta_{2}$

Quenching of the single-particle strength

"Experimental" SP strength:

$$
S^{\exp }=\frac{\sigma^{\exp }}{\sigma^{\text {th }}}
$$

Prog. in Part. and Nucl. Phys118 (2021) 103847

$$
\sum S_{j}^{\exp } \leq S_{j}^{\mathrm{IPSM}}=2 j+1
$$

Indirect approach to study SRC content of nuclear w.f.

Quenching of the single-particle strength

- No dependence on isospin asymmetry in QFS reactions
- (p,pn) values are systematically larger:

$$
R s=0.85(10) \text { vs } R s=0.65(4)
$$

Summary

- QFS provides unique access to the single-particle structure of nuclei
- Elementary scattering process as a knockout mechanism
- Inverse-kinematics approach: asymmetric nuclei and additional kinematic observables
- Need for accurate reaction models and experimental data
- Reaction and structure part have to be treated within the same many-body theory

Thank you!

${ }^{12} \mathrm{C}(\mathrm{p}, \mathrm{pn}){ }^{11} \mathrm{C}$ reaction

Angular correlations via CB measurements

M. Holl et al. Phys. Lett.B 795 (2019) 682

