# Update of the 2022 JINR SRC experiment

#### Göran Johansson 31.1.2023



#### 4<sup>th</sup> International SRC-EMC Workshop

# QE (p, 2p) Knockout in Inverse Kinematics

- Post selection suppresses distortion <sup>stino</sup> 2022:
- Absolute cross section
- Quenching
- Attenuation All at high momentum transfer



2

Nature Physics (2021)

# SRC Study in Inverse Kinematics

#### **2018**:

- np dominance
- Scale separation (Factorization) All with low statistics

#### **2022**:

- Improve statistics
- Detect recoil n/p
- Multi-fragment reconstruction
- Fragment distribution  $\rightarrow$  SRC "Origin" SRC pairs are (2p)<sup>-1</sup>, (1p1s)<sup>-1</sup>, (2s)<sup>-1</sup>



Nature Physics (2021)

#### **Beam Properties**

|                                | 2018                           | 2022*                        |
|--------------------------------|--------------------------------|------------------------------|
| Duration<br>(Physics runs)     | 10 days                        | 15 days                      |
| <sup>12</sup> C Beam Intensity | 2.5x10 <sup>5</sup> lons/spill | 4x10 <sup>5</sup> Ions/spill |
| Spill length                   | 2 sec spill / 10 sec           | 5 sec / 13 sec               |
| Beam Momentum                  | 4 GeV/c/nucleon                | 3.75 GeV/c/nucleon           |

\* The first time **Booster** + Nuclotron



#### **Experimental Setup**



#### **Experimental Setup**





#### **Incident Beam Measurement**

 ${}^{12}C + p \rightarrow 2p + fragment(s)$ 



#### Incident Beam – PID



# Incident Beam – Time Resolution

- 2 new timing scintillators
- Each with 2 PMTs
- Combined resolution  $\sigma = 45$ ps (100ps @2018)



#### **Fragment Spectrometer**

#### $^{12}C+p \rightarrow 2p + fragment(s)$



#### Fragment Spectrometer – Charge ID

2018





### Fragment Spectrometer - Tracking

Magnetic Rigidity





#### **Fragment Spectrometer**

 $^{12}C+p \rightarrow 2p + fragment(s)$ 





### Two Arm Spectrometer (TAS)



#### **TAS - Vertex Reconstruction**

3 lead targets – calibration run



LH<sub>2</sub> target – physics runs



#### TAS – PID



# QE <sup>12</sup>C(p, 2p)<sup>11</sup>B selection

$$P_{miss}^{\mu} = P_1^{\mu} + P_2^{\mu} - P_{targe}^{\mu}$$

All quantities are defined in <sup>12</sup>C frame

 $E_{miss} = m_p - P_{miss}^0$ 



#### <sup>12</sup>C(p, 2p)<sup>11</sup>B - QE selection



# QE <sup>12</sup>C(p, 2p)<sup>11</sup>B Missing Mass

• 
$$M_{miss}^2 = E_{miss}^2 - \vec{P}_{miss}^2$$

- Resolution:
- 2022: 156 MeV<sup>2</sup>/c<sup>4</sup>
- 2018: 168 MeV<sup>2</sup>/c<sup>4</sup>



### QE knockout – Pmiss distributions

2018



Nature Physics (2021)



# Next steps towards QE cross-section determination

- Clear single track  $\rightarrow$  Multi-hits tracking in TAS
- Efficiency and acceptance for proton detection

# **Towards SRC Analysis**

- Following QE analysis
- Expected:

more (p, 2p) SRC events events with detected recoil p/n multi-fragments SRC events

#### Analysis Group



Maria Patsyuk



Julian Kahlbow

#### Students







Vasilisa Lenivenko

Göran Johansson Timur Atovullaev

#### Thanks!