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Probing  universality of short range nucleon correlations 
high momentum

Momenta are observables, distances are not

1



2

Outline

Resolution scales

Sources of non-universality

Interactions of projectile with 2N (screening)

(e,e’) & different efficiency for emission of fast nucleons

Treatment  of absorption of emitted nucleons

3N 



A quick  look at coordinate and momentum deuteron wave functions
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D-wave dominates in momentum space between 300 and 800 MeV/c in spite of 
being much smaller than S wave at all distances. High momentum tail in this region 
is due to Fourier transform of rapidly changing integrand. 
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No simple relation  “high momentum — small distance”

Is w(k) /u(k) universal for k> 300 MeV/c?

No direct calculations so far.

Critical to perform measurements with polarized deuteron. To 
separate S and D wave and also probe light cone dynamics 3

A quick look at coordinate and momentum space wave functions of deuteron

Wiringa calculated the sum over all waves



Realistic NN interactions - NN potential slowly (power law) decreases at large momenta 
-- nuclear wf high momentum  asymptotic determined by singularity of potential:

�2
D(k)|k�⇥ � V 2

NN (k)
k4

D-wave dominates in the Deuteron wf
 for   300 MeV/c < k < 700 MeV/c

D-wave is due to  tensor forces which 
are much more important  for pn than pp

VNN(k)
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Properties of SRCs
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S-wave

D-wave

Deuteron wave 
function

CD  Bonn

v18 Argonne Large differences between in nD(p)=ψ2D(p) for p>0.4 GeV/c  - 
absolute value and relative importance of S and D waves between 
currently popular models though they fit equally well pn  phase 
shifts.  Traditional nuclear physics probes are not adequate to 
discriminate between these models.
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Tensor forces are pretty singular  ➟ manifestations very similar to 
shorter range correlations - so we refer to both of them as SRC

α~1

α~1

α

2-α

(HMCs)

/HMCs
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Change of the number  & kind of degrees of freedom with trdolution I is organic property of QFT
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D~(x,Q2) =f ~ ~ D~(xIz,Q2/A2, Q~/A2)DbA(z,Q~). (3.10)

Here the sum goes over all partons b in the target A. A is the scale parameter. The IMF diagram
corresponding to eq. (3.10) is shown in fig. 3.3. The virtuality Q~is chosen to be sufficiently large for
perturbative QCD to be applicable. All effects that cannot be calculated in perturbative QCD are
absorbed into the parton distribution at this virtuality, D~,(z,Q~).The kernel D~(x/z,Q2/A2, Q~IA2)
(the amplitude for lepton scattering off a parton “b” with virtuality Q~)is universal (independent of
the type of hadron A). It has been calculated explicitly in a number of works in leading (and
next-to-leading) order logarithmic approximation (see, e.g., ref. [4] and references therein). Thus, all
information on nuclear structure that can be obtained from deep inelastic scattering at Q2 ~‘ Q~is really
contained in the parton distributions DCA(x, Q~)— the (leading-twist) nuclear wave function.

During recent years a new generation of experiments enabled one to check the basic predictions of
eq. (3.10) and to find the Q2-range where higher-twist (~1/Q2)corrections to these equations are
small.

The experimentally measured structure functions can be expressed through the valence (nonsinglet)
and sea (singlet) quark distributions (eqs. 3.4, 3.5) and the gluon distribution as

xF
3(x, Q

2) = D~(x,Q2/A2, Q~IA2)OV(x,Q~),
F
2(x, Q

2) = D~(x,Q21A2, Q~IA2)O[V(x, Q~)+ S(x, Q~)]+ D~,(x,Q2/A2, Q~/A2)OG(x,Q~),
S(x, Q2) = [D~(x,Q21A2, Q~IA2)— D~(x,Q21A2, Q~IA2)]0 V(x, Q2)

+ D~(x,Q2/A2, Q~IA2)0S(x,Q~)+ D~(x,Q2/A2, Q~IA2)0G(x, Q2), (3.11)

where the symbol 0 denotes the convolution integral of eq. (3.10), and D~,D~,D~are the kernels of
the evolution of valence quarks in themselves, of sea quarks in sea quarks, and of gluons in sea quarks,
respectively.

A crucial question for the applicability of eq. (3.10) is the minimal value of Q~where this equation is
still valid. At present some theoretical restrictions on the value of Q~are known: (i) The running
coupling constant a~at virtuality Q~should be at least smaller than 1, which corresponds to Q~ 4A2.
(ii) The QCD sum rule approach (see the review and references in refs. [5, 6]) indicates that for all
hadrons built of light quarks nonperturbative effects due to the interaction of quarks and gluons with
vacuum condensates, like in fig. 3.4 (which seems to be a necessary consequence of the spontaneous

AJ=L-A ~L
Fig. 3.3. Fig. 3.4. Typical diagram for the interaction with vacuum condensates

in deep inelastic .y*N scattering, leading to the twist-4 contribution to
the cross section.
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Experience of quantum field theory - interactions at different resolutions 
(momentum transfer) resolve different  degrees of freedom - renormalization,.... 
Describe the effects of the Dirac sea…  No simple relation between relevant 
degrees of freedom at different resolution (virtuality)scales. 

➟ Complexity of the problem

① To resolve nucleons with k < kF , one needs Q2≥ 0.8 GeV2.

related effect: Q2  dependence of quenching, Q

Three important scales

related to the rate of eA—> e’p(A-1) process
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Hard nuclear reactions I:  energy transfer > 1 GeV and momentum transfer q > 1 GeV. 

 Sufficient to resolve short-range correlations (SRCs) = direct observation of SRCs but  
not sensitive to quark-gluon structure of the constituents 

Hard nuclear reactions II:  energy transfer ≫ 1 GeV and momentum transfer q ≫ 1 
GeV.  May involve nucleons in special (for example small size  configurations).    
Allow to resolve quark-gluon structure of SRC: difference between bound and free 
nucleon wave function, exotic configurations

③

②
q0 � 1GeV ⇥ |V SR

NN |,  q � 1GeV/c⇥ 2 kF

Principle of resolution scales (FS 76) was ignored in 70’s, leading to believe SRC could 
not  be unambiguously observed.  Hence, very limited data 

Historical remark: in 70’s   it was considered hopeless to look for SRC experimentally, hence Phys.Lett. 
rules (informal)  stated to us by the editor were to reject claims to the opposite without peer review  

Hence one has  to treat the processes in the relativistic domain.  The  price 
is a need to treat the nucleus wave function using light-cone quantization - - 
One cannot use (at least in a simple way) nonrelativistic description of 
nuclei as well as covariant approaches. (More about this in the second part 
of the talk (EMC effect…) 

⇒ 6
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is easiest to interpret when final mass is large (for example x=const Q large)

7

 Will consider universality for “2” and “3” limits 

6

Hard nuclear reactions I:  energy transfer > 1 GeV and momentum transfer q > 1 GeV. 

 Sufficient to resolve short-range correlations (SRCs) = direct observation of SRCs but  
not sensitive to quark-gluon structure of the constituents 

Hard nuclear reactions II:  energy transfer ≫ 1 GeV and momentum transfer q ≫ 1 
GeV.  May involve nucleons in special (for example small size  configurations).    
Allow to resolve quark-gluon structure of SRC: difference between bound and free 
nucleon wave function, exotic configurations

③

②
q0 � 1GeV ⇥ |V SR

NN |,  q � 1GeV/c⇥ 2 kF

Principle of resolution scales (FS 76) was ignored in 70’s, leading to believe SRC could 
not  be unambiguously observed.  Hence, very limited data 

Historical remark: in 70’s   it was considered hopeless to look for SRC experimentally, hence Phys.Lett. 
rules (informal)  stated to us by the editor were to reject claims to the opposite without peer review  

Hence one has  to treat the processes in the relativistic domain.  The  price 
is a need to treat the nucleus wave function using light-cone quantization - - 
One cannot use (at least in a simple way) nonrelativistic description of 
nuclei as well as covariant approaches. (More about this in the second part 
of the talk (EMC effect…) 

⇒



382 L. Frankfurt and M. Strikman, Hard nuclear processes and microscopic nuclear structure

V2(k) (8.35)

It follows from the above discussion (eqs. 8.34 and 8.35) and the relation between nA(k) and
PA(k, E) (eq. 8.26) that at large k the dominant contribution to f PA(k, E) dE arises from the region
of large E:

E(k) + ER(k) — k212m. (8.36)

Note that on average the interaction between the remaining nucleon of the two-nucleon correlation and
the rest of the residual nucleus tends to reduce E(k) but by a small amount (<<k212m for large k).
Equation (8.36) reasonably agrees with the trend observed in a numerical calculation of P3He(k, E)
[27].
An immediate consequence of eqs. (8.36) and (8.27) — which in fact follows from the kinematical

analysis of section 8.2.1 — is that the states with E(k) satisfying eq. (8.36) do not give a contribution to
the cross section of reactions (8.1) and (8.2) for x >2. Consequently, for large negative y such that
x(y, —+ co) <2, the right-hand side of eq. (8.34) should considerably increase with Q2 until Emax in
eq. (8.31) reaches the value given by eq. (8.36) (i.e., until x(y, Q2) becomes smaller than 2; for
y = —0.4 GeVlc and A ~ I this corresponds to Q2 >2 GeV2). This phenomenon was observed numeri-
cally in the behaviour of P3He(k, E) and F3He(Y, Q2) calculated using realistic two-nucleon potentials
[22].

To illustrate that nucleon configurations are important at x >2—2.5 and large Q2 (i.e. large k) let us
consider the case of a three-nucleon system. It follows from the kinematical analysis of section 8.2.1
that in the case of y~scattering from a three-nucleon system at x >2 and sufficiently large Q2 the
momenta of both spectator nucleons should be large. Thus, similar to the above analysis of nA(k) we
can use as a guide for the behaviour of P

3(k, E) at large k the perturbation expansion in V(k).
The first obvious contribution is due to configurations in the ground state wave functions of the

nucleus where the momenta of all three nucleons are large. The leading diagrams for the ground state
wave function of the nucleus for such configurations are presented in fig. 8.8. Their contribution is
proportional to (e.g. for fig. 8.8b)

PA(k, E)IE<COflSt k~= ~ )~n~(kI2). (8.37)

A comparable contribution to ~A (k, E) is due to the overlap integral between the configuration of two
nucleons in the initial wave function with momenta p1—0, — k and the final state wave function of the
two-nucleon system with momenta k1 k2 (see fig. 8.9). The final answer has the same form as in eq.
(8.37). [Weuse here eqs. (8.33) and (8.35) to estimate ~1NN(k/2).]

~ K 3 ~(K,-~,0)

~V(K) _________ _________________________

~V(K1) ___________________ I ~WNN(~/2)

Fig. 8.8. Fig. 8.9.
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of the maximum of the light-cone density matrix p ~(a, p1) and does not depend on the value of MR.
Consequently, a shift of the position of the quasielastic peak from that in free eN scattering may arise at
large Q

2 only due to the presence of nonnucleon degrees of freedom in the nuclear wave function [see
eq. (8.79) and fig. 8.17].
The variable y explicitly depends on A due to the assumption of coherent recoil used in the definition

of y (eq. 8.30). As a result the scattering off the same few-nucleon correlations corresponds to quite
different y for different nuclei. For example, the contribution of the two-nucleon correlation with
k
1 = —k2 = 0.5 GeV/c at large Q

2 corresponds to y = —0.5, —0.42, —0.40, —0.38 GeV/c for A =

2, 3, 4, ~‘ 1. Consequently the use of the y-variable masks the relationships between o~(x, Q2) discussed
in section 8.2, which naturally arise in the framework of a nonrelativistic quantum-mechanical
description of nuclei (see below).

8.3.2. Properties of the spectral function at large nucleon momenta
In order to foresee the pattern ofy-scaling violation and the range of applicability ofthe scaling laws

derived in section 8.2, and to explain what numerical calculations are needed now it is necessary to
analyse the general properties of ~A (k, E) at large k. (Remember that at present no calculations of
~A (k, E) exist for large k and A >3, due to the lack of an effective procedure to calculate the N >2
nucleon wave function for the continuum.) The straightforward generalization of this analysis will also
be of use in the discussion of the properties of the light-cone spectral function in section 8.4.
For potentials singular for r—* 0 the dominant contribution to nA(k) at large k is evidently given by

the two-nucleon correlations, i.e., by configurations where the momentum of the fast nucleon is
balanced by one nucleon (see fig. 8.6), i.e.

nA(k)k-- ~
2NV’) çfr~(k). (8.33)

Here ~2N(k) (l4rD(k)) is the high-momentum component of the two-nucleon (deuteron) wave function.
In the current calculations of nA(k) for different nuclei (

3He, 4He, 160) eq. (8.33) is approximately
satisfied for k ~ (0.3—0.4) GeV/c. In principle the high-momentum behaviour of ~N(k) depends on the
quantum numbers of the two-nucleon system: spin, isospin, orbital momentum, and it could be
different from i/i~(k).
Provided that the internucleon potential V(k) is local and

V(k)Ik...~ ~ (8.34)

with n> 1, the behaviour of nA(k) for k—* co is controlled by the Born diagram of fig. 8.7 and therefore
[25, 26]

Fig. 8.6. Fig. 8.7.
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V2(k) (8.35)
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~ K 3 ~(K,-~,0)

~V(K) _________ _________________________

~V(K1) ___________________ I ~WNN(~/2)

Fig. 8.8. Fig. 8.9.

The Born term dominates momentum distribution 

at  large  momenta

3N contribution is parametrically suppressed as compared to 2N

 The light cone dynamics - opposite expectation: at   α >2 (actually α >1.5) 3N,4N correlations dominate.  

Α

A-dependence of 3N and 2N is expected to be different (next slide).
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the cross section of reactions (8.1) and (8.2) for x >2. Consequently, for large negative y such that
x(y, —+ co) <2, the right-hand side of eq. (8.34) should considerably increase with Q2 until Emax in
eq. (8.31) reaches the value given by eq. (8.36) (i.e., until x(y, Q2) becomes smaller than 2; for
y = —0.4 GeVlc and A ~ I this corresponds to Q2 >2 GeV2). This phenomenon was observed numeri-
cally in the behaviour of P3He(k, E) and F3He(Y, Q2) calculated using realistic two-nucleon potentials
[22].

To illustrate that nucleon configurations are important at x >2—2.5 and large Q2 (i.e. large k) let us
consider the case of a three-nucleon system. It follows from the kinematical analysis of section 8.2.1
that in the case of y~scattering from a three-nucleon system at x >2 and sufficiently large Q2 the
momenta of both spectator nucleons should be large. Thus, similar to the above analysis of nA(k) we
can use as a guide for the behaviour of P

3(k, E) at large k the perturbation expansion in V(k).
The first obvious contribution is due to configurations in the ground state wave functions of the

nucleus where the momenta of all three nucleons are large. The leading diagrams for the ground state
wave function of the nucleus for such configurations are presented in fig. 8.8. Their contribution is
proportional to (e.g. for fig. 8.8b)

PA(k, E)IE<COflSt k~= ~ )~n~(kI2). (8.37)

A comparable contribution to ~A (k, E) is due to the overlap integral between the configuration of two
nucleons in the initial wave function with momenta p1—0, — k and the final state wave function of the
two-nucleon system with momenta k1 k2 (see fig. 8.9). The final answer has the same form as in eq.
(8.37). [Weuse here eqs. (8.33) and (8.35) to estimate ~1NN(k/2).]

~ K 3 ~(K,-~,0)

~V(K) _________ _________________________

~V(K1) ___________________ I ~WNN(~/2)

Fig. 8.8. Fig. 8.9.

Hence breaking of universality at large α 
8
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Triple correlations in (e,e’) - expect flat region in x where 3N dominate & faster A dependence of 3N SRC
FIG. 16: Per-nucleon cross section ratios for 9Be, 12C, 64Cu, 197Au to 3He. Horizontal lines

indicating a2(A)

a2(
3He)

in the 2N-SRC region.
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FIG. 17: (a) The A dependence of the experimental evaluation of R3 compared with the prediction

of Eq.27. (b) The A dependence of a3(A, Z) parameter compared to a2(A, Z) of Ref.[6].

in Fig. 17(a) we evaluated the weighted average of Rexp

3
(A,Z) for ↵3N > 1.6 and compared

them with the magnitude of ( a2(A,Z)

a2(3He)
)2 in which a2(A,Z)’s are taken from Ref. [55]. In these

evaluations 3He cross sections were taken from the F (y) fit to the SLAC data. Numeri-

cal data of Fig. 17 are presented also Table I. The comparison in Fig. 17(a) shows good

agreement with the prediction of Eq.(27) for the full range of nuclei. We investigated the

sensitivity of the weighted average of R3(A,Z) on the lower limit of ↵3N (before rebinning)
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However statistic is low, data have significant systematics issues.

Need data at larger Q  and much higher statistics

Reminder: 3N forces, correlations are important for dynamics of neutron stars
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Fig. 5.2. The estimate of the (F~.(x)/A)J(F2D(x)/2)ratio using realistic nuclear WF with few-nucleoncorrelations (eq. (5.11)) (solid curve) and using
the two-nucleon correlation approximation.

The factor 1.5 arises due to compression of the deuteron cluster [164].Therefore the ratio F2A(x)/A
should decrease in transition from A = 4 to n = 6.
Similarly in the frame of cluster model one can obtain:

F~(x)= p~Fte(x)+F~i’(x), F~(x)= 2F?~(x) for x > 1, F~(x)= 3p~He(X)

The check of these relationships would help to understand the range of applicability of these models,
which are usually applied to description of the average distance effects.
In the range of 12< A <200 the A dependence of F2A(x)/A can be estimated using analysis of [721

(eq. (2.40)) where A dependence of few-nucleon correlations was estimated in the framework of dilute
gas approximation. F2A(x)/A — A’”~F(x)where n(x) — 0.2 and rather weakly increases with x since
different few-nucleon correlations have rather similar A dependence for A > 12 (see section 2.4). To
conclude, we have demonstrated in this section that investigation of high energy deep inelastic reactions
enables to investigate absolute magnitude of the short range nucleon WF and probably its cluster de-
composition.
A comment. One can use the measurements of I~A(X,Q

2) in the near-threshold region to determine
the values of a. Indeed, applying the FNC the composition of p~(a,k

1) we obtain:

FIA(x,Q
2)=A~aJ(A)cr~(x,Q2) (5.16)

where o~(x,Q2) = 0 for x >j. Evidently by choosing the appropriate kinematical region one can
suppress here contributions of 2,3-nucleon correlations, thus enhancing high correlations. o-~can be
calculated using eq. (3.3) (as in the 3He case); though e.g. o~can be determined from 3He data, etc.

The estimate of the (F2A (x)/F2D(x)  in ratio using realistic nuclear WF with few-nucleon  
correlations (solid curve) and using the two-nucleon correlation approximation.  

  

2N SRC

2N + 3N+…SRC

PARTON DENSITIES

<α> ~  x+0.5

Early sensitivity to 3 N high momentum correlations

F&S 80
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PROBLEM IS HIGHER TWIST / QUASIELASTIC CONTRIBUTIONS

DAY, SARGSIAN, FANKFURT, MS    1993  

SCALING TERM DOMINATES STARTING AT Q2 ~ 15 —20 GEV2

\
Highly desirable to  check the picture n by measuring  the A/D ratio 
for wide range of  x, Q with different role of 2N and 3 N correlations

11



                    Several classes of non universality of the SRC 

for example light cone nucleon density ρ(α) 


 extracted using different processes:

Universality of   ρ(α),  if extraction  is corrected for initial and final state  
absorption T(A) - change from eikonal due to color transparency  onset?)

A(p,2p) at large -t , (e,e’p),  gamma A —> M +B +(A-2)


Calculation of absorption including both shell and SRC effects still a challenge. 

One needs to treat propagation  of fast (eikeonal) and slow (mean field nucleons)

In C(e,e’p): T(P-shell) T(S-shell) ~ 1.2 

Also not only absorption but also distortion: was 
implemented by Misak in the analysis of the BNL data

12

Compare e,e’NN in forward and backward spectator distribution



Higher order effect: surface selection stronger for proton projectile 
than for photon beam - effect on a_2 extracted neglecting this effect.


Amplitude of the projectile  - nucleon scattering may depend 
on nucleon vituality leading to non universality

Potential for    100%      Non-unversality

To add A(e,e’) x>1 to analysis, one needs to calculate 
accurately fsi in (e,e’) for for pn   within 100 MeV to the 
threshold.  Arenhovel reported enhancements by up to factor 2

13



• \
interesting to measure  tagged structure functions where modification is expected to 
increase quadratically with tagged nucleon momentum. It is applicable for searches of 
the form factor modification in (e,e’N).

1� F bound
2N (x/↵, Q2)/F2N (x/↵, Q2) = f(x/↵, Q2)(m2 � p2int)

Here α is the light cone fraction of interacting nucleon

Tagging  of  proton and neutron in  e+D→e+ backward N 
+X as  a probe of the origin of the EMC effect  (FS 85)

↵spect = (2� ↵) = (EN � p3N )/(mD/2)

34

γ

D p
α

2-α

In practice, small background for 2- α >1, and  in this kinematics one expects an EMC like 
effect already for smaller  spectators momenta, since  x/α > x. 

Importance caveat: for large nucleon momenta nucleons closer to each other 
and chances of f.s.i maybe larger. Not the case in semi exclusive case eD—>e +p + “resonance”.
But maybe relevant for larger W. Need dedicate studies of f.s.i. in DIS in the nucleus fragmentation region.

FSI  in different stages: 

(a) slow hadron produced ialong the beam direction,              

 (b) they destroy would be spectators. Condition for significant FSI : pn are close enough - 

selects SRCs
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3N nonuniversality  in  nucleon emission vs projectile, and vs (e,e’) 

TO EMIT NUCLEON 1 BEST IS TO TRANSFER TO NUCLEONS 2 & 3 LARGE 
MOMENTA. EASY FOR PROTON PROJECTILE NUT NOT VIRTUAL PHOTON 

INCLUSIVE ELECTRON SCATTERING - NO SUPPRESSION  OF 3N, ( COMPETITION OF 2N AND 3N)

NON-FACTORISATION

IMPLICATIONS FOR 2N PRODUCTION OF SPECTAOTRS

Related effect for treating Fermi motion of NN in mean field

Related effect for treating Fermi motion of NN in mean field
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Conclusions

For many observables universality should hold after corrections for FSU

Universality for different projectiles requires correction for interaction 

with both nucleons of. SRC

Violation of universality at large x would be a signal for contribution of 3N SRC 
and break universality of backward spectrum  - photons vs proton projectiles

Effort to study FSI  of slow hadrons produced in DIS.


