Overview of Exclusive Scattering SRC Measurements

Andrew Denniston MIT January 30th , 2023

Inclusive Measurements σ_A/A $\overline{\sigma_d/2}$ 12C 27AI 8 6 4 2 Scattered electron Incident electron 8 ²⁰⁸Pb ⁵⁶Fe 6 Scattered proton 4 Correlated partner proton or neutron 2 1.2 1.4 1.6 1.8 2.0 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.8 1.0 XB

• Schmookler, Nature (2019)

Inclusive Measurements $\frac{\sigma_A/A}{\sigma_d/2}$ 12C 8 6 4 2 Scattered electron Incident electron 8 208Ph 56Fe 6 Scattered proton 4 Correlated partner proton or neutron 2 1.2 1.4 1.6 1.8 2.0 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.8 1.0 XB

• Schmookler, Nature (2019)

More Questions

 x_B

2

- How abundant are SRCs?
- What kinds of SRCs dominate?
- Do SRCs move in the nucleus?
- Can we learn anything about the NN interaction?

$$\mathbf{x}_{\mathrm{B}} \equiv \frac{\mathbf{Q}^2}{2m_N\omega}$$

Tensor to Scalar with CLAS12

Proton Momentum [GeV]

Inclusive Measurements σ_A/A $\overline{\sigma_d/2}$ 12C 27AI 8 6 4 2 Scattered electron Incident electron 8 ²⁰⁸Pb ⁵⁶Fe 6 Scattered proton 4 Correlated partner proton or neutron 2 1.2 1.4 1.6 1.8 2.0 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.8 1.0 XB

• Schmookler, Nature (2019)

Proton Momentum [GeV]

Overview of Exclusive SRC Measurements

- First Exclusive Measurements
- CLAS6: The Perfect Detector for SRCs
- Generalized Contact Formalism
- SRC Universality
- SRCs with CLAS12

Overview of Exclusive SRC Measurements

• First Exclusive Measurements

First Exclusive Measurements at Brookhaven

First Exclusive Measurements at Brookhaven

Triple Coincidence with the EVA Detector

 $p_{initial} = p_1 + p_2 - p_{beam}$

First Experimental Evidence of a Correlated Partner

- Tang, PRL (2003)
- Piasetzky, PRL (2006)

Evidence of np-dominance

Subedi, Science (2008)

Missing Momentum [GeV/c]

Moving to Electron Probes

Hall C

Hall B CLAS Hall A¹⁵

Triple Coincidence with High-Resolution Spectrometers

High Momentum Pairs are Backto-Back

• Shneor, PRL (2007)

BNL Result

• Subedi, Science (2008)

Missing Momentum [GeV/c]

Hall-A Further Supports np-Dominance

• Subedi, Science (2008)

Missing Momentum [GeV/c]

The Tensor Force

Isospin Configuration is Momentum Dependent

• Korover, PRL (2014)

Overview of Exclusive SRC Measurements

- First Exclusive Measurements
- CLAS6: The Perfect Detector for SRCs

CEBAF Large Acceptance Spectrometer

Open (e,e') trigger, Large-Acceptance, Low luminosity (~10³⁴ cm⁻² sec⁻¹)

Electrons, Protons, and Neutrons!

Correlated Proton-Neutron pair is Back-to-Back

• Baghdasaryan, PRL (2010)

This Analysis Only Works for ${}^{3}He$

First Data Mining Analysis (e,e'pp) and (e,e'pn)

• Hen, Science (2014)

First Exclusive SRC Results for Heavy Nuclei

32

Center of Mass Motion

Cohen, PRL (2018)

Center of Mass Motion

Cohen, PRL (2018)

What do we see?

 High momentum nucleons with correlated partners.

What do we see?

- High momentum nucleons with correlated partners.
- Center of Mass momentum is small in comparison.

What do we see?

- High momentum nucleons with correlated partners.
- Center of Mass momentum is small in comparison.
- The the pair is decoupled from the A-2 system.

Overview of Exclusive SRC Measurements

- First Exclusive Measurements
- CLAS6: The Perfect Detector for SRCs
- Generalized Contact Formalism

 $q \gg p_{relative} \gg p_{C.M.}$

Pair Abundance

Pair Abundance

Center of Mass Motion

Pair Abundance

Center of Mass Motion

Pair Interaction

Pair Abundance

Center of Mass Motion

Pair Interaction

- How abundant are SRCs?
- What kinds of SRCs dominate?
- Do SRCs move in the nucleus?
- Can we learn anything about the NN interaction?

- How abundant are SRCs?
- What kinds of SRCs dominate?
- Do SRCs move in the nucleus?
- Can we learn anything about the NN interaction?

• Schmidt, Nature (2020)

Schmidt, Nature (2020)

Full Cross Sections Are Necessary

• Schmidt, Nature (2020)

• Pybus, PLB (2020)

Overview of Exclusive SRC Measurements

- First Exclusive Measurements
- CLAS6: The Perfect Detector for SRCs
- Generalized Contact
 Formalism
- SRC Universality

Using Different Probes for SRC Measurements

Using Different Probes for SRC Measurements

Probing SRCs with Real Photon Beam

Center of Mass Motion

Probing SRCs with Carbon Beam

SRC Universality of Scale

Overview of Exclusive SRC Measurements

- First Exclusive Measurements
- CLAS6: The Perfect Detector for SRCs
- Generalized Contact
 Formalism
- SRC Universality
- SRCs with CLAS12

Moving from CLAS6 to CLAS12

Cross Check with CLAS6

- Cross Check with CLAS6
- High statistics for SRC data
- ⁴*He*, ¹²*C*, ⁴⁰*Ar*, ⁴⁰*Ca*, ⁴⁸*Ca*, ¹²⁰*Sn* Targets

Target	Channel	Event Estimate
LD2	e'p	47,000
LHe	e'p	130,000
	e'pp	5,500
Cx4	e'p	161,000
	e'pp	5,600
Snx4	e'p	9,900
	e'pp	430
40Ca	e'p	67,000
	e'pp	3,600

- Cross Check with CLAS6
- High statistics for SRC data
- ⁴*He*, ¹²*C*, ⁴⁰*Ar*, ⁴⁰*Ca*, ⁴⁸*Ca*, ¹²⁰*Sn* Targets
- Dedicated Neutron Detectors

Advantages of CLAS12 to CLAS6

- Cross Check with CLAS6
- High statistics for SRC data
- ⁴*He*, ¹²*C*, ⁴⁰*Ar*, ⁴⁰*Ca*, ⁴⁸*Ca*, ¹²⁰*Sn* Targets
- Dedicated Neutron Detectors
- Look at SRCs over a Range of Q^2

Center of Mass Motion

Cohen, PRL (2018)

• Schmidt, Nature (2020)

Proton Momentum [GeV]

Proton Momentum [GeV]

Proton Momentum [GeV]

Proton Momentum [GeV]

 $0.55 GeV < p_{miss} < 0.7 GeV$

 $0.7 GeV < p_{miss} < 0.85 GeV$

Scale Dependence of SRC Measurements

e'

• First Exclusive Measurements

- First Exclusive Measurements
- CLAS6: The Perfect Detector for SRCs

- First Exclusive Measurements
- CLAS6: The Perfect Detector for SRCs
- Generalized Contact Formalism

- First Exclusive Measurements
- CLAS6: The Perfect Detector for SRCs
- Generalized Contact
 Formalism
- SRC Universality

- First Exclusive Measurements
- CLAS6: The Perfect Detector for SRCs
- Generalized Contact
 Formalism
- SRC Universality
- SRCs with CLAS12

End

Inclusive Measurements

• Schmookler, Nature (2019)

What do we know?

$$\mathbf{x}_{\mathrm{B}} \equiv \frac{\mathbf{Q}^2}{2m_N\omega}$$

111