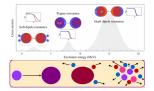
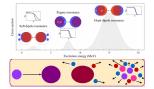
> Quasi-deuteron model to effectively embed short range correlations in relativistic mean field approaches

4th International Workshop on Quantitative Challenges in SRCs and the EMC Effect Research

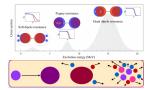
CEA Paris-Saclay (Orme des Merisiers), 30th January - 3rd February, 2023



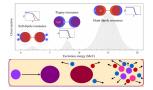
Authors: <u>S. Burrello^{1,2}</u>, S. Typel¹ ¹ LNS - INFN, Catania ² Technische Universität, Darmstadt


Stefano Burrello, Stefan Typel Quasi-deuteron to embed SRCs within RMF approaches

- Equation of State (**EoS**) of nuclear matter (**NM**):
 - Structure and reaction dynamics of finite nuclei
 - Modelization of compact stellar objects
- Theoretical models (only baryons degrees of freedom)
 - Ab-initia approaches based on realistic interactions
 - Phenomenological models with effective interaction
- Mean-field approximation ⇒ Energy density functional
 - Non-relativistic Skyrme type interaction
 - Relativistic models based on mesons exchange
- Short-range induced many-body correlations
 - Formation of bound states (clusters) at



- Equation of State (EoS) of nuclear matter (NM):
 - Structure and reaction dynamics of finite nuclei
 - Modelization of compact stellar objects
- Theoretical models (only baryons degrees of freedom)
 - Ab-initio approaches based on realistic interactions
 - Phenomenological models with effective interaction
- Mean-field approximation ⇒ Energy density functional
 - Non-relativistic Skyrme type interaction
 - Relativistic models based on mesons exchange
- Short-range induced many-body correlations
 - Formation of bound states (clusters) at low-density



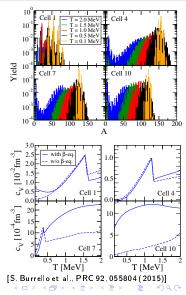
- Equation of State (EoS) of nuclear matter (NM):
 - Structure and reaction dynamics of finite nuclei
 - Modelization of compact stellar objects
- Theoretical models (only baryons degrees of freedom)
 - Ab-initio approaches based on realistic interactions
 - Phenomenological models with effective interaction
- Mean-field approximation ⇒ Energy density functional
 - Non-relativistic Skyrme type interaction
 - Relativistic models based on mesons exchange
- Short-range induced many-body correlations
 Formation of bound states (clusters) at the design of the states (clusters) at the design of the states (clusters) at the state

- Equation of State (EoS) of nuclear matter (NM):
 - Structure and reaction dynamics of finite nuclei
 - Modelization of compact stellar objects
- Theoretical models (only baryons degrees of freedom)
 - Ab-initio approaches based on realistic interactions
 - Phenomenological models with effective interaction
- Mean-field approximation ⇒ Energy density functional
 - Non-relativistic Skyrme type interaction
 - Relativistic models based on mesons exchange
- Short-range induced many-body correlations
 - Formation of bound states (clusters) at low-density

Cluster-based phenomenological models

Phenomenological models with clusters

- Dilute matter as a mixture of nucleons and nuclei
 - \Rightarrow Nuclear statistical equilibrium model
 - [A. R. Raduta, F. Gulminelli, PRC 82, 065801 (2010)]
- Cluster dissolution at saturation $n_0 \Rightarrow$ Mott effect
 - Geometrical excluded-volume mechanism
 - Microscopic in-medium effects
- Generalized relativistic density functional (GRDF)
 ⇒ Meson exchange with density dependent couplings
 - [S. Typel et al., PRC 81, 015803 (2010)]

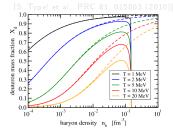

- 4 同 1 4 回 1 4 回 1

Nuclear clusters and relativistic density functionals Mott effect and short-range correlations

Cluster-based phenomenological models

- Phenomenological models with clusters
 - Dilute matter as a mixture of nucleons and nuclei
 - ⇒ Nuclear statistical equilibrium model
 - [A. R. Raduta, F. Gulminelli, PRC 82, 065801 (2010)]
- Cluster dissolution at saturation $n_0 \Rightarrow$ Mott effect
 - Geometrical excluded-volume mechanism
 - Microscopic in-medium effects
- Generalized relativistic density functional (GRDF)
 ⇒ Meson exchange with density dependent couplings

[S. Typel et al., PRC 81, 015803 (2010)]


Nuclear clusters and relativistic density functionals Mott effect and short-range correlations

10

Cluster-based phenomenological models

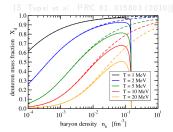
Phenomenological models with clusters

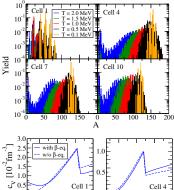
- Dilute matter as a mixture of nucleons and nuclei ⇒ Nuclear statistical equilibrium model
 - [A. R. Raduta, F. Gulminelli, PRC 82, 065801 (2010)]
- Cluster dissolution at saturation $n_0 \Rightarrow Mott effect$
 - Geometrical excluded-volume mechanism
 - Microscopic in-medium effects
- Generalized relativistic density functional (GRDF)
 ⇒ Meson exchange with density dependent couplings

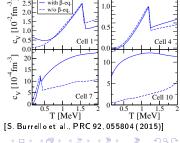
Cell 4 10 10 - 0.1 Me 10 Yield 10 Cell 7 Cell 10 10 10 10 10 0 100 150 0 50 100 150 2003.0 $[10^{-2} \text{fm}^{-3}]$ with B-ea w/o B-eq 2.0 1.5 0 1.0 3 0.5 Cell 1 Cell 4 0 $c_{\rm V}\,[10^{-4}{\rm fm}^{-3}]$ Cell 7 T [MeV] T [MeV

[S. Burrello et al., PRC 92, 055804 (2015)]

Stefano Burrello, Stefan Typel


Quasi-deuteron to embed SRCs within RMF approaches

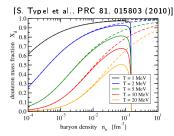

Nuclear clusters and relativistic density functionals Mott effect and short-range correlations

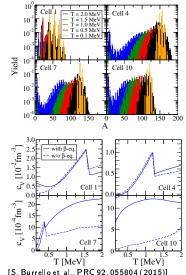

Cluster-based phenomenological models

Phenomenological models with clusters

- Dilute matter as a mixture of nucleons and nuclei ⇒ Nuclear statistical equilibrium model
 - [A. R. Raduta, F. Gulminelli, PRC 82, 065801 (2010)]
- Cluster dissolution at saturation $n_0 \Rightarrow Mott effect$
 - Geometrical excluded-volume mechanism
 - Microscopic in-medium effects
- Generalized relativistic density functional (GRDF)
 ⇒ Meson exchange with density dependent couplings

Quasi-deuteron to embed SRCs within RMF approaches


Stefano Burrello, Stefan Typel

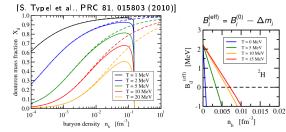

Nuclear clusters and relativistic density functionals Mott effect and short-range correlations

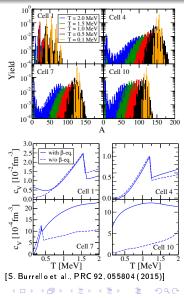
Cluster-based phenomenological models

Phenomenological models with clusters

- Dilute matter as a mixture of nucleons and nuclei ⇒ Nuclear statistical equilibrium model
 - [A. R. Raduta, F. Gulminelli, PRC 82, 065801 (2010)]
- Cluster dissolution at saturation $n_0 \Rightarrow Mott$ effect
 - Geometrical excluded-volume mechanism
 - Microscopic in-medium effects
- Generalized relativistic density functional (GRDF)
 ⇒ Meson exchange with density dependent couplings

Stefano Burrello, Stefan Typel Quasi-deuteron to embed SRCs within RMF approaches


▲ 同 ▶ → (三 ▶


Nuclear clusters and relativistic density functionals Mott effect and short-range correlations

Cluster-based phenomenological models

• Phenomenological models with clusters

- Dilute matter as a mixture of nucleons and nuclei ⇒ Nuclear statistical equilibrium model
 - [A. R. Raduta, F. Gulminelli, PRC 82, 065801 (2010)]
- Cluster dissolution at saturation $n_0 \Rightarrow Mott effect$
 - Geometrical excluded-volume mechanism
 - Microscopic in-medium effects \Rightarrow Mass-shift (Δm_i)
- Generalized relativistic density functional (GRDF)
 ⇒ Meson exchange with density dependent couplings

Stefano Burrello, Stefan Typel

Quasi-deuteron to embed SRCs within RMF approaches

Nuclear clusters and relativistic density functionals Mott effect and short-range correlations

Mass-shift parameterizations at low density

- Mass-shift obtained by solving the in-medium many-body Schrödinger equation
 - Contributions from Pauli blocking or screening of electronic background
 - **Parameterization** as function of density (n_b) , asymmetry (β) , temperature (T)
- Symmetric NM (SNM) with clusters at rest $\Rightarrow \Delta m_i^{(
 m low)} \propto n_b$
 - [G. Röpke, PRC 79, 014002 (2009); G. Röpke, NPA 867, 6 (2011)]
- Heuristic dependence beyond Mott density to prevent the clusters to reappear

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Nuclear clusters and relativistic density functionals Mott effect and short-range correlations

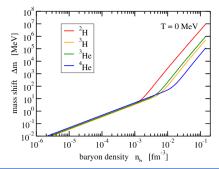
Mass-shift parameterizations at low density

- Mass-shift obtained by solving the in-medium many-body Schrödinger equation
 - Contributions from Pauli blocking or screening of electronic background
 - **Parameterization** as function of density (n_b) , asymmetry (β) , temperature (T)
- Symmetric NM (SNM) with clusters at rest $\Rightarrow \Delta m_i^{(
 m low)} \propto n_b$

[G. Röpke, PRC 79, 014002 (2009); G. Röpke, NPA 867, 6 (2011)]

Heuristic dependence beyond Mott density to prevent the clusters to reappear

(人間) くうり くうり

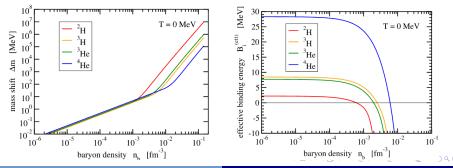

Nuclear clusters and relativistic density functionals Mott effect and short-range correlations

Mass-shift parameterizations at low density

- Mass-shift obtained by solving the in-medium many-body Schrödinger equation
 - Contributions from Pauli blocking or screening of electronic background
 - **Parameterization** as function of density (n_b) , asymmetry (β) , temperature (T)
- Symmetric NM (SNM) with clusters at rest $\Rightarrow \Delta m_i^{
 m (low)} \propto n_b$

[G. Röpke, PRC 79, 014002 (2009); G. Röpke, NPA 867, 6 (2011)]

Heuristic dependence beyond Mott density to prevent the clusters to reappear

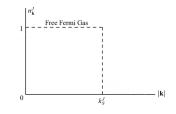

Stefano Burrello, Stefan Typel Quasi-deuteron to embed SRCs within RMF approaches

Mass-shift parameterizations at low density

- Mass-shift obtained by solving the in-medium many-body Schrödinger equation
 - Contributions from Pauli blocking or screening of electronic background
 - **Parameterization** as function of density (n_b) , asymmetry (β) , temperature (T)
- Symmetric NM (SNM) with clusters at rest $\Rightarrow \Delta m_i^{
 m (low)} \propto n_b$

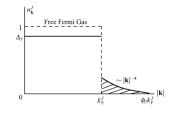
[G. Röpke, PRC 79, 014002 (2009); G. Röpke, NPA 867, 6 (2011)]

• Heuristic dependence beyond Mott density to prevent the clusters to reappear

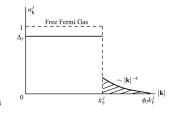


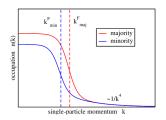
Stefano Burrello, Stefan Typel

Quasi-deuteron to embed SRCs within RMF approaches


Mean-field framework and short-range correlations

- Cluster-free NM above n₀: Free Fermi gas (FFG)
 ⇒ step function in momentum distribution at zero T
- Nucleon knock-out in inelastic electron scattering
 - [O. Hen et al. (CLAS Coll.), Science 346, 614 (2014)]
 - Smearing of Fermi surface in cold nucleonic matter
 - $\circ\,$ High momentum tail (HMT) decreasing with $\sim\,$ |
- Nucleon-nucleon short-range correlations (SRCs)
 Dependence components or dependence core of nuclear force
- Same height for two species in asymmetric systems
- Isospin-dependence of distribution
 - Kinetic symmetry energy very different from FFG ⇒ Importance of incorporating SRCs in realistic EoS


Mean-field framework and short-range correlations


- Cluster-free NM above n₀: Free Fermi gas (FFG)
 ⇒ step function in momentum distribution at zero T
- Nucleon knock-out in inelastic electron scattering
 [O. Hen et al. (CLAS Coll.), Science 346, 614 (2014)]
 - Smearing of Fermi surface in cold nucleonic matter
 - ullet High momentum tail (HMT) decreasing with $\sim |{f k}|^{-4}$
- Nucleon-nucleon short-range correlations (SRCs)
 - Tensor components or repulsive core of nuclear forces
- Same height for two species in asymmetric systems
 Enhancement of HMT of monopole to the polynomial
- Isospin-dependence of distribution
 - Kinetic symmetry energy very different from FFG
 - \Rightarrow Importance of incorporating SRCs in realistic EoS

Mean-field framework and short-range correlations

- Cluster-free NM above n₀: Free Fermi gas (FFG)
 ⇒ step function in momentum distribution at zero T
- Nucleon knock-out in inelastic electron scattering [O. Hen et al. (CLAS Coll.), Science 346, 614 (2014)]
 - Smearing of Fermi surface in cold nucleonic matter
 - ullet High momentum tail (HMT) decreasing with $\sim |{f k}|^{-4}$
- Nucleon-nucleon short-range correlations (SRCs)
 - Tensor components or repulsive core of nuclear forces
- Same height for two species in asymmetric systems
 - Enhancement of HMT of minority to the majority one
- Isospin-dependence of distribution
 - Kinetic symmetry energy very different from FFG
 - \Rightarrow Importance of incorporating SRCs in realistic EoS

∃ → < ∃ →</p>

Quasi-deuterons as surrogate for SRCs in GRDF

- Effective resonances (quasi-clusters) for treatment of SRCs at supra-saturation
 - Embedded in GRDF model through in-medium modifications of $\Delta m_d^{({
 m high})}$
- Two-body correlations in np 3S_1 channel \Rightarrow quasi-deuteron
- $T = 0 \Rightarrow$ **boson condensate** of deuterons under chemical potentials **equilibrium**

$$\mu_d = \mu_n + \mu_p = (m_1^2 + 0.01) + (m_2^2 + 0.01) + (m_1^2 + 0.01) + (m_$$

 $\begin{array}{l} \left(a_{1}a_{2}+a_{2}a_{3}\right) \left(h_{1}c_{2}-h_{1}-h_{2}a_{3}a_{3}\right) \left(h_{1}c_{2}-c_{3}-h_{2}a_{3}-h_{2}a_{3}-h_{3}a_{3}-h_{3}a_{3}\right) \\ \left(h_{1}a_{2}b_{2}-h_{1}b_{2}\right) \left(h_{1}a_{3}-h_{3}-h_{3}a_{3}-h_$

- $m_{\text{nuc}}^* \ge 0 \Rightarrow 0 \le X_d \le \min\left\{X_d^{(\max)}, 1 |\beta|\right\}, X_d^{(\max)} = \frac{m_{\text{nuc}}}{\gamma_d C_{\sigma B_h}} \xrightarrow[n_h \to \infty]{} 0$
- Crucial role of scaling factor $\chi_d \equiv \chi$ for bound nucleon-meson coupling strengt

Quasi-deuterons as surrogate for SRCs in GRDF

- Effective resonances (quasi-clusters) for treatment of SRCs at supra-saturation
 - Embedded in GRDF model through in-medium modifications of $\Delta m_d^{({
 m high})}$
- Two-body correlations in np ${}^{3}S_{1}$ channel \Rightarrow quasi-deuteron
- *T* = 0 ⇒ boson condensate of deuterons under chemical potentials equilibrium
 With scalar (S_i), we can be (V_i) and rearrangement (W_i, W_i^(r)) potentials (*i* = *ouc*, *d*)

$$\mu_d = \mu_n + \mu_p \Rightarrow m_d^* + \Delta m_d^{(high)} + V_d' = \sqrt{k_n^2 + (m_n^*)^2 + V_n' + \sqrt{k_p^2 + (m_p^*)^2 + V_p'}}$$

$$m_i^* = m_i - S_i \qquad S_i = \chi_i A_i C_\sigma n_\sigma \qquad V_i = \chi_i A_i (C_\omega n_\omega + C_\rho n_\rho)$$
$$V_i^\prime = V_i + W_i + W_i^{(e)} \qquad W_i = \frac{1}{2} \left(C_\omega^\prime n_\omega^2 + C_\rho^\prime n_\rho^2 - C_\sigma^\prime n_\sigma^2 \right)$$
$$W_i^{(e)} = n_d \frac{\partial \Delta m_d^{(high)}}{\partial n_i} \qquad C_f = \frac{\Gamma_f^2(n_b)}{m_i^2} \qquad C_f^\prime = \frac{dG_f}{dn_b}, \qquad j = \sigma, \omega, \rho$$

m^{*}_{nuc} ≥ 0 ⇒ 0 ≤ X_d ≤ min {X^(max)_d, 1 − |β|}, X^(max)_d = (m_{nuc})/(χ_dC_σn_b) (m_{b→∞})
 Crucial role of scaling factor χ_d ≡ χ for bound nucleon-meson coupling strengthered.

Quasi-deuterons as surrogate for SRCs in GRDF

- Effective resonances (quasi-clusters) for treatment of SRCs at supra-saturation
 - Embedded in GRDF model through in-medium modifications of $\Delta m_d^{({
 m high})}$
- Two-body correlations in np ${}^{3}S_{1}$ channel \Rightarrow quasi-deuteron
- $T = 0 \Rightarrow boson \ condensate$ of deuterons under chemical potentials equilibrium
 - With scalar (S_i) , vector (V_i) and rearrangement $(W_i, W_i^{(r)})$ potentials (i = nuc, d)

$$\mu_{d} = \mu_{n} + \mu_{p} \Rightarrow \qquad m_{d}^{*} + \Delta m_{d}^{(\text{high})} + V_{d}' = \sqrt{k_{n}^{2} + (m_{n}^{*})^{2} + V_{n}' + \sqrt{k_{p}^{2} + (m_{p}^{*})^{2}} + V_{p}'}$$

$$m_i^* = m_i - S_i \qquad S_i = \chi_i A_i C_\sigma n_\sigma \qquad V_i = \chi_i A_i (C_\omega n_\omega + C_\rho n_\rho)$$
$$V_i' = V_i + W_i + W_i^{(r)} \qquad W_i = \frac{1}{2} \left(C_\omega' n_\omega^2 + C_\rho' n_\rho^2 - C_\sigma' n_\sigma^2 \right)$$

$$W_i^{(r)} = n_d \frac{\partial \Delta m_d^{(\text{high})}}{\partial n_i} \qquad C_j = \frac{\Gamma_j^2(n_b)}{m_j^2} \qquad C'_j = \frac{dC_j}{dn_b}, \qquad j = \sigma, \omega, \rho$$

m^{*}_{nuc} ≥ 0 ⇒ 0 ≤ X_d ≤ min {X^(max)_d, 1 - |β|}, X^(max)_d = M^{nuc}/<sub>χ_dC_σn_b →_{n_b→∞} 0
 Crucial role of scaling factor χ_d ≡ χ for bound nucleon-meson coupling strengh
</sub>

くロレイオアンス きょう きょうない Stefano Burrello, Stefan Typel Quasi-deuteron to embed SRCs within RMF approaches

Quasi-deuterons as surrogate for SRCs in GRDF

- Effective resonances (quasi-clusters) for treatment of SRCs at supra-saturation
 - Embedded in GRDF model through in-medium modifications of $\Delta m_d^{({
 m high})}$
- Two-body correlations in np ${}^{3}S_{1}$ channel \Rightarrow quasi-deuteron
- $T = 0 \Rightarrow$ **boson condensate** of deuterons under chemical potentials **equilibrium**
 - With scalar (S_i) , vector (V_i) and rearrangement $(W_i, W_i^{(r)})$ potentials (i = nuc, d)

$$\mu_{d} = \mu_{n} + \mu_{p} \Rightarrow \qquad m_{d}^{*} + \Delta m_{d}^{(\text{high})} + V_{d}' = \sqrt{k_{n}^{2} + (m_{n}^{*})^{2}} + V_{n}' + \sqrt{k_{p}^{2} + (m_{p}^{*})^{2}} + V_{p}'$$

$$\begin{split} m_i^* &= m_i - S_i \qquad S_i = \chi_i A_i C_\sigma n_\sigma \qquad V_i = \chi_i A_i \left(C_\omega n_\omega + C_\rho n_\rho \right) \\ V_i' &= V_i + W_i + W_i^{(r)} \qquad W_i = \frac{1}{2} \left(C_\omega' n_\omega^2 + C_\rho' n_\rho^2 - C_\sigma' n_\sigma^2 \right) \\ W_i^{(r)} &= n_d \frac{\partial \Delta m_d^{(\text{high})}}{\partial n_i} \qquad C_j = \frac{\Gamma_j^2(n_b)}{m_i^2} \qquad C_j' = \frac{dC_j}{dn_b}, \qquad j = \sigma, \omega, \rho \end{split}$$

• $m_{\text{nuc}}^* \ge 0 \Rightarrow 0 \le X_d \le \min\left\{X_d^{(\max)}, 1 - |\beta|\right\}, X_d^{(\max)} = \frac{m_{\text{nuc}}}{\chi_d C_\sigma n_b} \xrightarrow[n_b \to \infty]{} 0$

• Crucial role of scaling factor $\chi_d \equiv \chi$ for bound nucleon-meson coupling strengt

Stefano Burrello, Stefan Typel Quasi-deuteron to embed SRCs within RMF approaches

Quasi-deuterons as surrogate for SRCs in GRDF

- Effective resonances (quasi-clusters) for treatment of SRCs at supra-saturation
 - Embedded in GRDF model through in-medium modifications of $\Delta m_d^{({
 m high})}$
- Two-body correlations in np ${}^{3}S_{1}$ channel \Rightarrow quasi-deuteron
- $T = 0 \Rightarrow$ **boson condensate** of deuterons under chemical potentials **equilibrium**
 - With scalar (S_i) , vector (V_i) and rearrangement $(W_i, W_i^{(r)})$ potentials (i = nuc, d)

$$\mu_{d} = \mu_{n} + \mu_{p} \Rightarrow \qquad m_{d}^{*} + \Delta m_{d}^{(\text{high})} + V_{d}' = \sqrt{k_{n}^{2} + (m_{n}^{*})^{2}} + V_{n}' + \sqrt{k_{p}^{2} + (m_{p}^{*})^{2}} + V_{p}'$$

$$m_i^* = m_i - S_i \qquad S_i = \chi_i A_i C_\sigma n_\sigma \qquad V_i = \chi_i A_i (C_\omega n_\omega + C_\rho n_\rho)$$
$$V_i' = V_i + W_i + W_i^{(r)} \qquad W_i = \frac{1}{2} (C_\omega' n_\omega^2 + C_\rho' n_\rho^2 - C_\sigma' n_\sigma^2)$$

$$W_i^{(r)} = n_d \frac{\partial \Delta m_d^{(\text{high})}}{\partial n_i} \qquad C_j = \frac{\Gamma_j^2(n_b)}{m_j^2} \qquad C'_j = \frac{dC_j}{dn_b}, \qquad j = \sigma, \omega, \rho$$

• $m_{\text{nuc}}^* \ge 0 \Rightarrow 0 \le X_d \le \min\left\{X_d^{(\max)}, 1 - |\beta|\right\}, \ X_d^{(\max)} = \frac{m_{\text{nuc}}}{\chi_d C_\sigma n_b} \xrightarrow[n_b \to \infty]{} 0$

• Crucial role of scaling factor $\chi_d \equiv \chi$ for bound nucleon-meson coupling strenght

Quasi-deuterons as surrogate for SRCs in GRDF

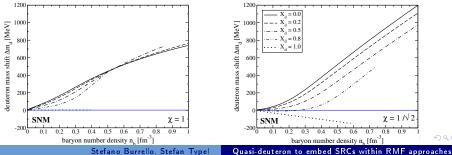
- Effective resonances (quasi-clusters) for treatment of SRCs at supra-saturation
 - Embedded in GRDF model through in-medium modifications of $\Delta m_d^{({
 m high})}$
- Two-body correlations in np ${}^{3}S_{1}$ channel \Rightarrow quasi-deuteron
- $T = 0 \Rightarrow$ **boson condensate** of deuterons under chemical potentials **equilibrium**
 - With scalar (S_i) , vector (V_i) and rearrangement $(W_i, W_i^{(r)})$ potentials (i = nuc, d)

$$\mu_{d} = \mu_{n} + \mu_{p} \Rightarrow \qquad m_{d}^{*} + \Delta m_{d}^{(\text{high})} + V_{d}' = \sqrt{k_{n}^{2} + (m_{n}^{*})^{2}} + V_{n}' + \sqrt{k_{p}^{2} + (m_{p}^{*})^{2}} + V_{p}'$$

$$m_i^* = m_i - S_i \qquad S_i = \chi_i A_i C_\sigma n_\sigma \qquad V_i = \chi_i A_i (C_\omega n_\omega + C_\rho n_\rho)$$
$$V_i' = V_i + W_i + W_i^{(r)} \qquad W_i = \frac{1}{2} \left(C_\omega' n_\omega^2 + C_\rho' n_\rho^2 - C_\sigma' n_\sigma^2 \right)$$

$$W_i^{(r)} = n_d \frac{\partial \Delta m_d^{(\text{high})}}{\partial n_i} \qquad C_j = \frac{\Gamma_j^2(n_b)}{m_j^2} \qquad C'_j = \frac{dC_j}{dn_b}, \qquad j = \sigma, \omega, \rho$$

• $m_{\text{nuc}}^* \ge 0 \Rightarrow 0 \le X_d \le \min\left\{X_d^{(\max)}, 1 - |\beta|\right\}, \ X_d^{(\max)} = \frac{m_{\text{nuc}}}{\chi_d C_\sigma n_b} \xrightarrow[n_b \to \infty]{} 0$

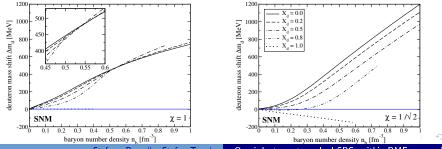

• Crucial role of scaling factor $\chi_d \equiv \chi$ for bound nucleon-meson coupling strenght

Deuteron fraction and mass-shift parameterization Thermodynamical quantities: low- and high-density limits

Quasi-deuterons mass-shift at high-density

- Scaling factor for deuteron-meson coupling strenght
 - $\chi = 1 \Rightarrow$ same strength as for free nucleons
 - $\chi < 1 \Rightarrow$ in-medium effects and description of chemical equilibrium constant

[L. Qin et al., PRL 108, 172701 (2012); R. Bougault et al., J. Phys. G 47, 025103 (2020)]

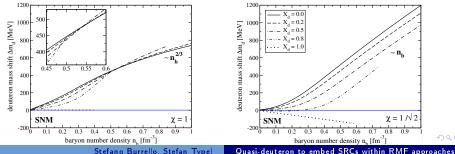


Stefano Burrello, Stefan Typel

Deuteron fraction and mass-shift parameterization Thermodynamical quantities: low- and high-density limits

Quasi-deuterons mass-shift at high-density

- Scaling factor for deuteron-meson coupling strenght
 - $\chi = 1 \Rightarrow$ same strength as for free nucleons
 - $\chi < 1 \Rightarrow$ in-medium effects and description of chemical equilibrium constant
 - [L. Qin et al., PRL 108, 172701 (2012); R. Bougault et al., J. Phys. G 47, 025103 (2020)]
- $1/\sqrt{2} < \chi_s = (0.85 \pm 0.05)$ universal scaling factor [H. Pais et al., PRC 97, 045805 (2018)]
 - No crossing $\Rightarrow \Delta m_d(n_b, X_d)$ invertible function for any density n_b
- $\Delta m_d^{(\text{nrgn})} \ll \Delta m_d^{(\text{RDF})} \Rightarrow$ Large change beyond Mott density for extended GRDF [S. Typel, EPJ Special Topics 229, 3433-3444 (2020)]]
- Interpolation of low-(Pauli blocking) and high-(condensate model) density limit

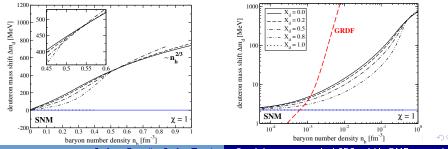

Stefano Burrello, Stefan Typel

Quasi-deuteron to embed SRCs within RMF approaches

Deuteron fraction and mass-shift parameterization Thermodynamical quantities: low- and high-density limits

Quasi-deuterons mass-shift at high-density

- Scaling factor for deuteron-meson coupling strenght
 - $\chi = 1 \Rightarrow$ same strength as for free nucleons
 - $\chi < 1 \Rightarrow$ in-medium effects and description of chemical equilibrium constant
 - [L. Qin et al., PRL 108, 172701 (2012); R. Bougault et al., J. Phys. G 47, 025103 (2020)]
- $1/\sqrt{2} < \chi_s = (0.85 \pm 0.05)$ universal scaling factor [H. Pais et al., PRC 97, 045805 (2018)]
 - No crossing $\Rightarrow \Delta m_d(n_b, X_d)$ invertible function for any density n_b


Stefano Burrello, Stefan Typel

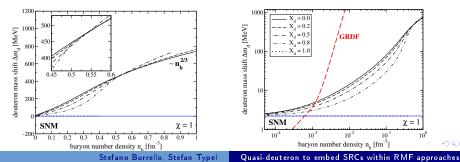
Quasi-deuterons mass-shift at high-density

- Scaling factor for deuteron-meson coupling strenght
 - $\chi = 1 \Rightarrow$ same strength as for free nucleons
 - $\chi < 1 \Rightarrow$ in-medium effects and description of chemical equilibrium constant

[L. Qin et al., PRL 108, 172701 (2012); R. Bougault et al., J. Phys. G 47, 025103 (2020)]

- $1/\sqrt{2} < \chi_s = (0.85\pm0.05)$ universal scaling factor [H. Pais et al., PRC 97, 045805 (2018)]
 - No crossing $\Rightarrow \Delta m_d(n_b, X_d)$ invertible function for any density n_b
- $\Delta m_d^{(high)} \ll \Delta m_d^{GRDF} \Rightarrow$ Large change beyond Mott density for extended GRDF [S. Typel, EPJ Special Topics 229, 3433–3444 (2020)]]
- Interpolation of low-(Pauli blocking) and high-(condensate model) density limit

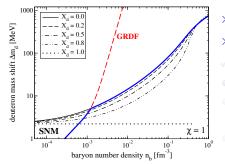
Stefano Burrello, Stefan Typel


Quasi-deuteron to embed SRCs within RMF approaches

Quasi-deuterons mass-shift at high-density

- Scaling factor for deuteron-meson coupling strenght
 - $\chi = 1 \Rightarrow$ same strength as for free nucleons
 - $\chi < 1 \Rightarrow$ in-medium effects and description of chemical equilibrium constant

[L. Qin et al., PRL 108, 172701 (2012); R. Bougault et al., J. Phys. G 47, 025103 (2020)]

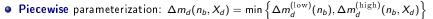

- $1/\sqrt{2} < \chi_s = (0.85\pm0.05)$ universal scaling factor [H. Pais et al., PRC 97, 045805 (2018)]
 - No crossing $\Rightarrow \Delta m_d(n_b, X_d)$ invertible function for any density n_b
- $\Delta m_d^{(\text{high})} \ll \Delta m_d^{\text{GRDF}} \Rightarrow$ Large change beyond Mott density for extended GRDF [S. Typel, EPJ Special Topics 229, 3433–3444 (2020)]]
- Interpolation of low-(Pauli blocking) and high-(condensate model) density limit

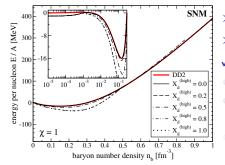
Deuteron fraction and mass-shift parameterization Thermodynamical quantities: low- and high-density limits

Piecewise interpolation and saturation constraints

• Piecewise parameterization: $\Delta m_d(n_b, X_d) = \min \left\{ \Delta m_d^{(\text{low})}(n_b), \Delta m_d^{(\text{high})}(n_b, X_d) \right\}$

× Δm_d(n_b) no smooth function
 × X^(high)_d = const. → 0
 ✓ Zero-density limit (one half ²H binding)
 Overbinding at n₀ ⇒ Re-fit of Γ_{i,0}
 Constraints on NM at submetry energy)
 Experimental results of SRCs in nuclei
 ⇒ X_{d,0} = 0.2 (pairs ≈ 20% of density)

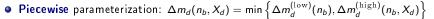

DD2		3.626940	< • • • • •	(目) (目) (目) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日

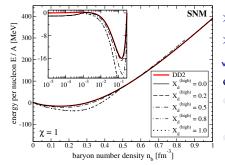

Stefano Burrello, Stefan Typel

Quasi-deuteron to embed SRCs within RMF approaches

Deuteron fraction and mass-shift parameterization Thermodynamical quantities: low- and high-density limits

Piecewise interpolation and saturation constraints


× Δm_d(n_b) no smooth function
 × X^(high)_d = const. → 0
 ✓ Zero-density limit (one half ²H binding)
 Overbinding at n₀ ⇒ Re-fit of Γ_{1,0}
 Constraints on NM at saturation (n₀) (E/A, m^{*}_{nuc}, pressure, symmetry energy)
 Experimental results of SRCs in nuclei ⇒ X_d = 0.2 (pairs ≈ 20% of density)

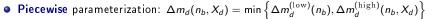

ъ.

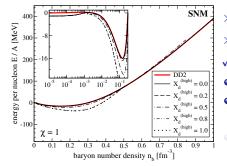
Stefano Burrello, Stefan Typel Quasi-deuteron to embed SRCs within RMF approaches

Deuteron fraction and mass-shift parameterization Thermodynamical quantities: low- and high-density limits

Piecewise interpolation and saturation constraints

× Δm_d(n_b) no smooth function
 × X^(high)_d = const. → 0
 ✓ Zero-density limit (one half ²H binding)
 Overbinding at n₀ ⇒ Re-fit of Γ_{i,0}
 Constraints on NM at saturation (n₀) (E/A, m^{*}_{nuc}, pressure, symmetry energy)
 Experimental results of SRCs in nuclei ⇒ X_d = 0.2 (pairs ≈ 20% of density)


Stefano Burrello, Stefan Typel


Quasi-deuteron to embed SRCs within RMF approaches

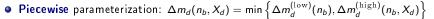
ъ.

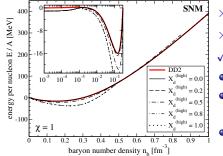
Deuteron fraction and mass-shift parameterization Thermodynamical quantities: low- and high-density limits

Piecewise interpolation and saturation constraints

 × Δm_d(n_b) no smooth function
 × X^(high)_d = const. → 0 n_{b→∞} 0

 ✓ Zero-density limit (one half ²H binding)
 Overbinding at n₀ ⇒ Re-fit of Γ_{i,0}
 Constraints on NM at saturation (n₀) (E/A, m^{*}_{nuc}, pressure, symmetry energy)
 Experimental results of SRCs in nuclei ⇒ X_{d,0} = 0.2 (pairs ≈ 20% of density)


	χ	$\Gamma_{\sigma,0}$	$\Gamma_{\omega,0}$	$\Gamma_{ ho,0}$	$\Delta m_{d,0} \; [{ m MeV}]$	$\frac{d\Delta m_d}{dn_b}\Big _{n_0}$ [MeV fm ³]
	1	10.580042	13.217226	3.556424	104.92	813.98
	$1/\sqrt{2}$	10.919963	13.719324	3.400187	58.23	570.80
DD2	_	10.686681	13.342362	3.626940		


Stefano Burrello, Stefan Typel

Quasi-deuteron to embed SRCs within RMF approaches

Deuteron fraction and mass-shift parameterization Thermodynamical quantities: low- and high-density limits

Piecewise interpolation and saturation constraints

Stefano Burrello, Stefan Typel

× Δm_d(n_b) no smooth function
 × X^(high)_d = const. → 0
 ✓ Zero-density limit (one half ²H binding)
 Overbinding at n₀ ⇒ Re-fit of Γ_{i,0}
 Constraints on NM at saturation (n₀) (E/A, m^{*}_{nuc}, pressure, symmetry energy)
 Experimental results of SRCs in nuclei ⇒ X_{d,0} = 0.2 (pairs ≈ 20% of density)

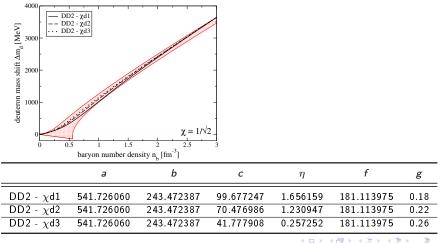
	χ	$\Gamma_{\sigma,0}$	$\Gamma_{\omega,0}$	$\Gamma_{ ho,0}$	$\Delta m_{d,0}$ [MeV]	$\frac{d\Delta m_d}{dn_b}\Big _{n_0}$ [MeV fm ³]
	1	10.580042	13.217226	3.556424	104.92	813.98
	$1/\sqrt{2}$	10.919963	13.719324	3.400187	58.23	570.80
DD2	_	10.686681	13.342362	3.626940		

Quasi-deuteron to embed SRCs within RMF approaches

Deuteron fraction and mass-shift parameterization Thermodynamical quantities: low- and high-density limits

・ 同 ト ・ ヨ ト ・ ヨ ト

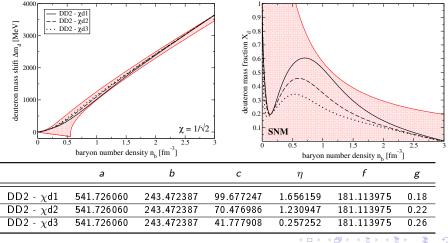
Deuteron mass-shift parametrization


ullet Unified mass-shift parameterization $(\gamma=1)$ [S. Burrello, S. Typel, EPJA 58, 120 (2022)]

$$\Delta m_d(x) = \frac{ax}{1+bx} + cx^{\eta+1} \left[1 - \tanh(x)\right] + fx^{\gamma} \tanh(gx), \qquad x = \frac{n_b}{n_0}$$

Deuteron mass-shift parametrization: $\chi = 1/\sqrt{2}$

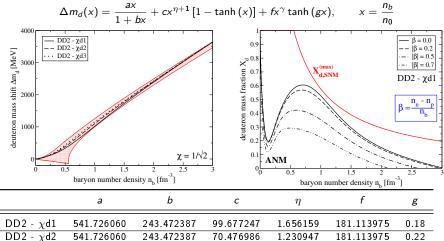
• Unified mass-shift parameterization ($\gamma=1$) [S. Burrello, S. Typel, EPJA 58, 120 (2022)]


$$\Delta m_d(x) = \frac{ax}{1+bx} + cx^{\eta+1} \left[1 - \tanh(x)\right] + fx^{\gamma} \tanh(gx), \qquad x = \frac{n_b}{n_0}$$

Deuteron mass-shift parametrization: $\chi = 1/\sqrt{2}$

ullet Unified mass-shift parameterization ($\gamma=1$) [S. Burrello, S. Typel, EPJA 58, 120 (2022)]

$$\Delta m_d(x) = \frac{ax}{1+bx} + cx^{\eta+1} \left[1 - \tanh(x)\right] + fx^{\gamma} \tanh(gx), \qquad x = \frac{n_b}{n_0}$$


541.726060

DD2 - χ d3

243.472387

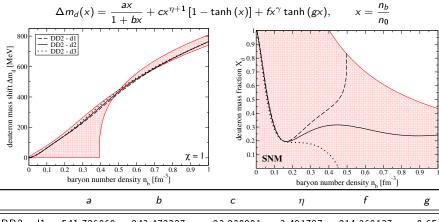
Deuteron mass-shift parametrization: $\chi = 1/\sqrt{2}$

• Unified mass-shift parameterization ($\gamma=1$) [S. Burrello, S. Typel, EPJA 58, 120 (2022)]

541.726060 243.472387 41.777908 0.257252 181.113975 0.26 <回><モン<

<br Quasi-deuteron to embed SRCs within RMF approaches Stefano Burrello, Stefan Typel

1.230947


181.113975

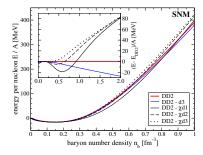
0.22

70.476986

Deuteron mass-shift parametrization: $\chi = 1$

• Unified mass-shift parameterization $(\gamma=2/3)$ [S. Burrello, S. Typel, EPJA 58, 120 (2022)]

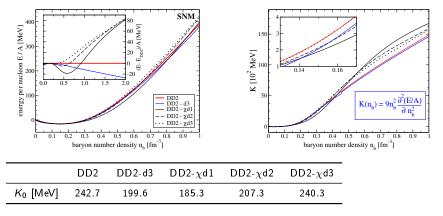
DD2 - d3	541.726060	243.472387	-140.309501	2.715545	214.368137	0.75
DD2 - d2	541.726060	243.472387	-98.923123	3.200967	214.368137	0.67632
DD2 - d1	541.726060	243.472387	-83.230901	3.491787	214.368137	0.65


el Quasi-deuteron to embed SRCs within RMF approaches

Stefano Burrello, Stefan Typel

SNM: impact on EoS and matter incompressibility

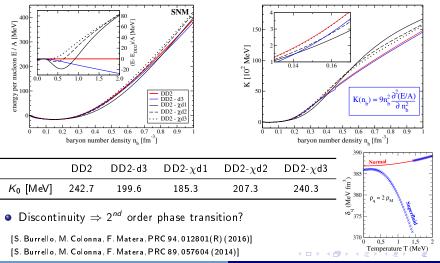
• Attraction in presence of quasi-deuterons \iff attraction/repulsion for Γ_i -refit


[S. Burrello, S. Typel, EPJA 58, 120 (2022)]

Deuteron fraction and mass-shift parameterization Thermodynamical quantities: low- and high-density limits

SNM: impact on EoS and matter incompressibility

[S. Burrello, S. Typel, EPJA 58, 120 (2022)]



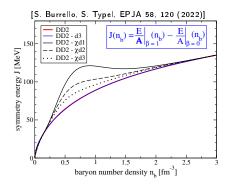
Deuteron fraction and mass-shift parameterization Thermodynamical quantities: low- and high-density limits

SNM: impact on EoS and matter incompressibility

• Attraction in presence of quasi-deuterons \iff attraction/repulsion for Γ_i -refit

[S. Burrello, S. Typel, EPJA 58, 120 (2022)]

Stefano Burrello, Stefan Typel

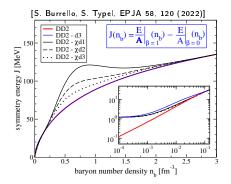

Quasi-deuteron to embed SRCs within RMF approaches

Deuteron fraction and mass-shift parameterization Thermodynamical quantities: low- and high-density limits

< E

э

Effect on symmetry energy and its slope

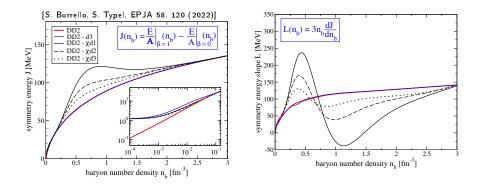


Deuteron fraction and mass-shift parameterization Thermodynamical quantities: low- and high-density limits

< 同 > < 三 >

- ∢ ⊒ →

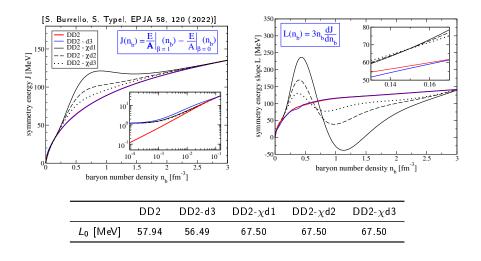
Effect on symmetry energy and its slope



Deuteron fraction and mass-shift parameterization Thermodynamical quantities: low- and high-density limits

- ∢ ⊒ →

э


Effect on symmetry energy and its slope

Deuteron fraction and mass-shift parameterization Thermodynamical quantities: low- and high-density limits

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Effect on symmetry energy and its slope

Deuteron fraction and mass-shift parameterization Thermodynamical quantities: low- and high-density limits

・ 同 ト ・ ヨ ト ・ ヨ ト

Final remarks and conclusions

Main topic

- Phenomenological models with in-medium modified clusters for a global EoS
- Quasi-deuterons as surrogate to embed SRCs within extended GRDF

Deuteron fraction and mass-shift parameterization Thermodynamical quantities: low- and high-density limits

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Final remarks and conclusions

Main topic

- Phenomenological models with in-medium modified clusters for a global EoS
- Quasi-deuterons as surrogate to embed SRCs within extended GRDF

Main results

- Unified mass-shift parameterization constrained by SRCs experiments
- Density behavior of deuteron mass fraction and correct EoS low-density limit
- Sensitivity of SNM (ANM) thermodynamical quantities to X_d and χ

Deuteron fraction and mass-shift parameterization Thermodynamical quantities: low- and high-density limits

イロト イボト イヨト イヨト

Final remarks and conclusions

Main topic

- Phenomenological models with in-medium modified clusters for a global EoS
- Quasi-deuterons as surrogate to embed SRCs within extended GRDF

Main results

- Unified mass-shift parameterization constrained by SRCs experiments
- Density behavior of deuteron mass fraction and correct EoS low-density limit
- Sensitivity of SNM (ANM) thermodynamical quantities to X_d and χ

Further developments and outlooks

- Extension to finite T, heavier clusters and momentum dependence of Δm_i
- In-medium wave function by solving full covariant two-body Dirac equation
- Single-nucleon momentum distribution and comparison with experiments

Deuteron fraction and mass-shift parameterization Thermodynamical quantities: low- and high-density limits

Final remarks and conclusions

Main topic

- Phenomenological models with in-medium modified clusters for a global EoS
- Quasi-deuterons as surrogate to embed SRCs within extended GRDF

Main results

- Unified mass-shift parameterization constrained by SRCs experiments
- Density behavior of deuteron mass fraction and correct EoS low-density limit
- Sensitivity of SNM (ANM) thermodynamical quantities to X_d and χ

Further developments and outlooks

- Extension to finite T, heavier clusters and momentum dependence of Δm_i
- In-medium wave function by solving full covariant two-body Dirac equation
- Single-nucleon momentum distribution and comparison with experiments

THANK YOU FOR YOUR KIND ATTENTION!