

DPhN (Nuclear Science Department)

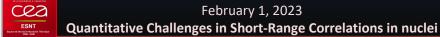
SRC and Final State Interaction within INCL

Jean-Christophe David

30 January- 3 February 2023 Quantitative Challenges in Short-Range Correlations in nuclei

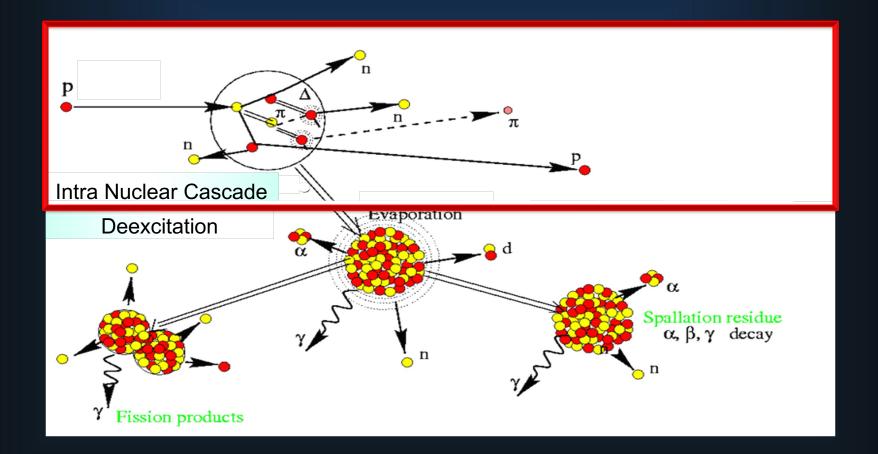
PLAN

➢ INCL


- SRC in INCL:
 - ✓ Why?
 - ✓ How?
 - ✓ Results
- Conclusions

February 1, 2023 Quantitative Challenges in Short-Range Correlations in nuclei

What is interesting and necessary to know about INCL when addressing SRC



Intra Nuclear Cascade of Liège

Nuclear Reaction:

Light particle + Nucleus

(~ MeV → 10-20 GeV)

ESNT

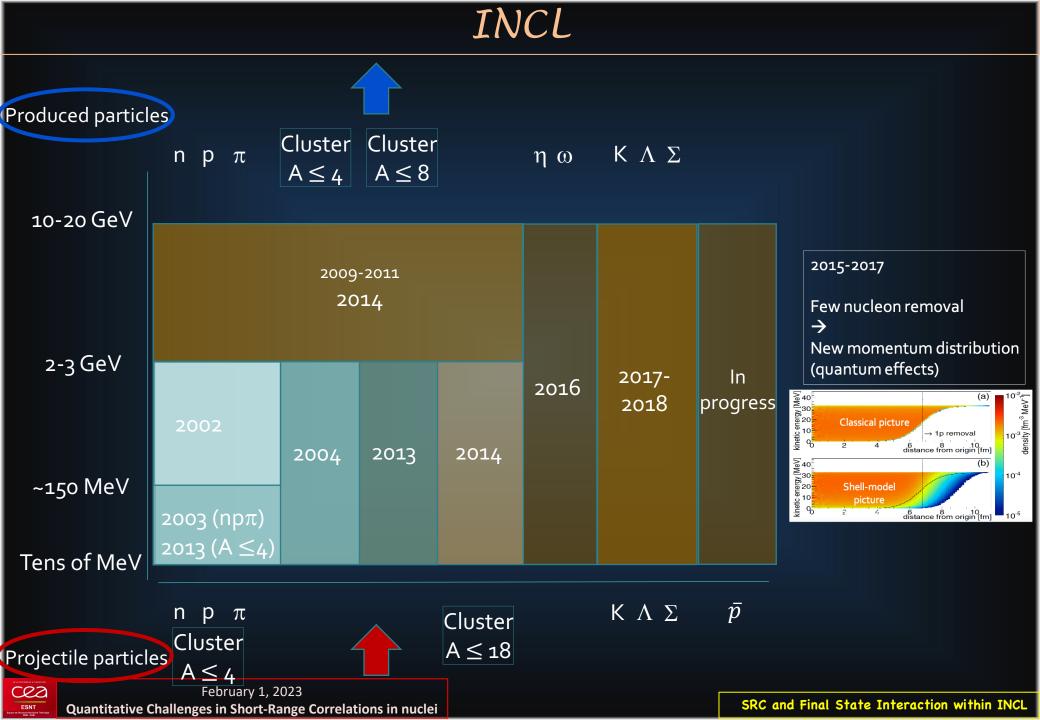
Intra Nuclear Cascade of Liège

Nuclear Reaction :

Light particle + Nucleus

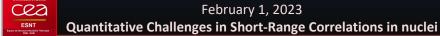
(~ MeV → 10-20 GeV)

INC: Monte Carlo method to solve the transport equation (with binary collisions)


$$\begin{aligned} \frac{\partial f_1}{\partial t} + \vec{v}.\vec{\nabla}_r f_1 - \vec{\nabla}_r U.\vec{\nabla}_p f_1 = \\ & -\int \frac{d^3 \vec{p}_2 d^3 \vec{p}_3 d^3 \vec{p}_4}{(2\pi)^6} \quad \sigma v_{12} \quad \delta^3 (\vec{p}_1 + \vec{p}_2 - \vec{p}_3 - \vec{p}_4) \\ & \left[f_1 f_2 \left(1 - f_3 \right) \left(1 - f_4 \right) - f_3 f_4 \left(1 - f_1 \right) \left(1 - f_2 \right) \right] \end{aligned}$$

(f_i : density distribution)

With hypotheses(main):


- Collisions are independent
- Potential is constant

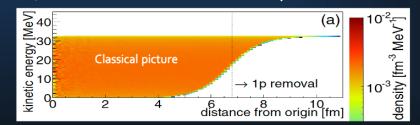
cea

What is important in the following (what must be changed for SRC):

TARGET (exactly, nucleon inside!) COLLISION

TARGET

Nucleus made of nucleons distributed in space and momentum

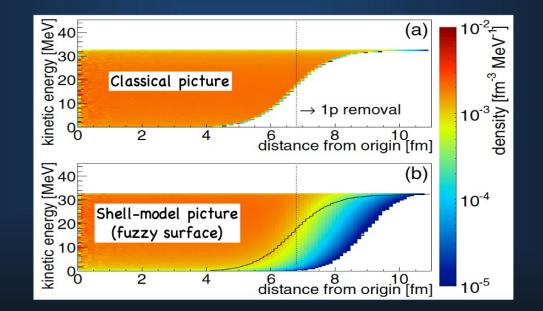

Classical picture (until ~2017) • Distribution in space (according to the A) $\rho(r) = \begin{cases} \rho_0 \frac{1}{1 + \exp\left(\frac{r-R_0}{a}\right)} & \text{for } A > 19 \\ \rho_0 \frac{(1 + \alpha(r/a)^2)}{\exp((r/a)^2)} & \text{for } 6 < A \leqslant 19 \\ \rho_0 \frac{1}{\exp((r/a)^2)} & \text{for } A \leqslant 6. \end{cases}$

• Distribution in momentum in a hard Fermi sphere

p and r correlated
 p shot randomly, then, r with Rmax=R(p)

High momenta go further than low momenta

TARGET

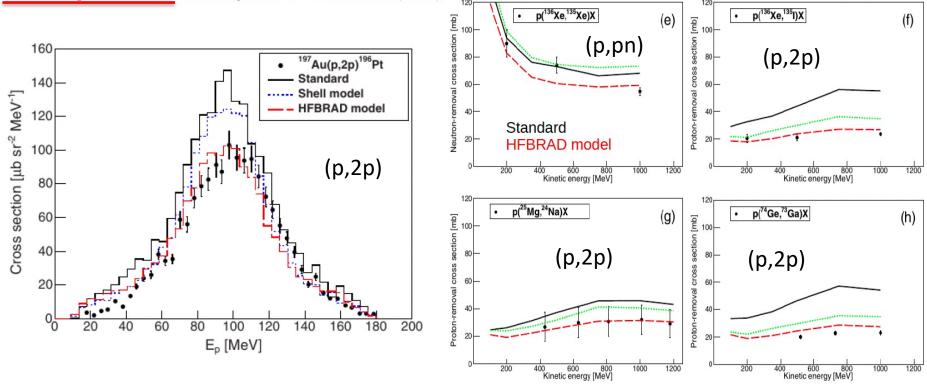

ESNT

Nucleus made of nucleons distributed in space and momentum

Classical picture replaced by a shell-model picture

 \rightarrow quantum effect accounted for

(single-particle wave functions from HFB calculations)



TARGET

Examples of results with the refined picture

Description of peripheral reactions

J. L. Rodríguez-Sánchez et al., Phys. Rev. C 96, 054602 (2017)

Refinement \rightarrow better description of (few) n, p removal

February 1, 2023 Quantitative Challenges in Short-Range Correlations in nuclei

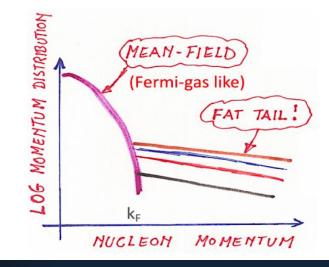
COLLISIONS

cea

ESNT

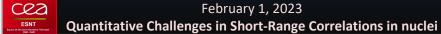
(Particles move on straight line with cst momentum \rightarrow mapping at any time)

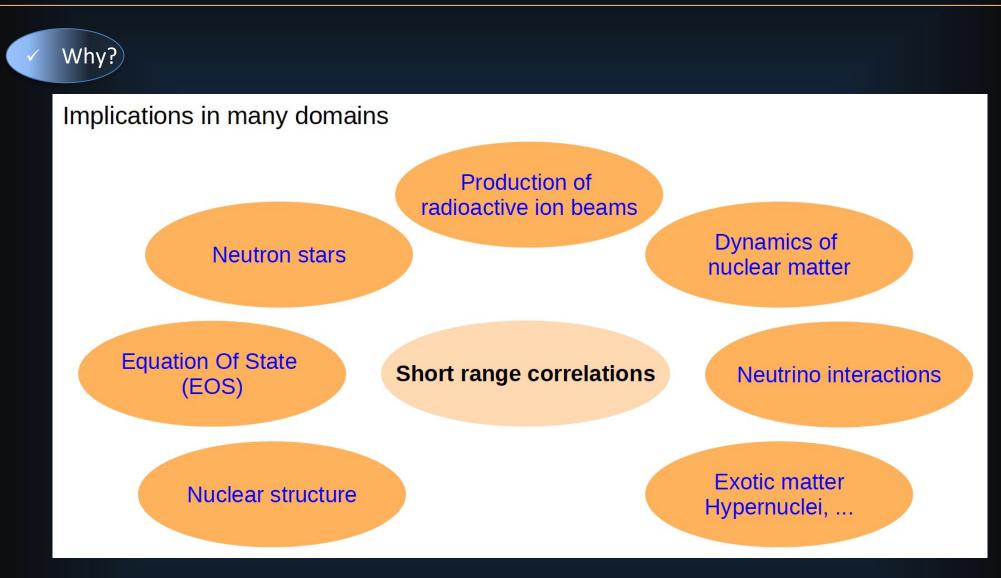
Particles and Interactions involved


IN	-{	NN	$N\Delta$	πN	$(\omega/\eta) N$	KN	\overline{K} N	ΛN	ΣN
	ī	NN	NN	πN	(ω/η) N	KN	\overline{K} N	ΛΝ	ΣΝ
OUT -		$N\Delta$	$N(\Lambda/\Sigma)K$	Δ	$(\omega/\eta) N\pi$	K'N'	\overline{K}' N'	ΣN	Σ 'N'
		$NN\pi$	$\Delta(\Lambda/\Sigma) K$	$2\pi N$	$(\omega/\eta) N2\pi$	$\mathrm{KN}\pi$	$\overline{K}\mathrm{N}\pi$		ΛN
		$NN2\pi$	$NNK\overline{K}$	$3\pi N$		$\mathrm{KN}2\pi$	$\overline{K}\mathrm{N}2\pi$		
		$NN3\pi$		$4\pi N$			$(\Lambda/\Sigma)\pi$		
		$NN4\pi$		$(\omega/\eta) N$			$(\Lambda/\Sigma)2\pi$		
		${ m NN}(\omega/\eta)$		$(\Lambda/\Sigma) {\rm K}$					
		$\mathrm{NN}(\omega/\eta)\pi$		$(\Lambda/\Sigma) \mathrm{K} \pi$					
		$\mathrm{NN}(\omega/\eta)2\pi$		$(\Lambda/\Sigma) \mathrm{K} 2\pi$					
		$NN(\omega/\eta)3\pi$		$\mathrm{NK}\overline{K}$					
		$NN(\omega/\eta)4\pi$							
		${ m N}(\Lambda/\Sigma){ m K}$							
		$N(\Lambda/\Sigma)K\pi$							
		$N(\Lambda/\Sigma)K2\pi$							
		$NNK\overline{K}$							
		NN-missing_strangeness							

February 1, 2023 Quantitative Challenges in Short-Range Correlations in nuclei

SRC are pairs of nucleons that are close together in the nucleus (wave functions overlap)

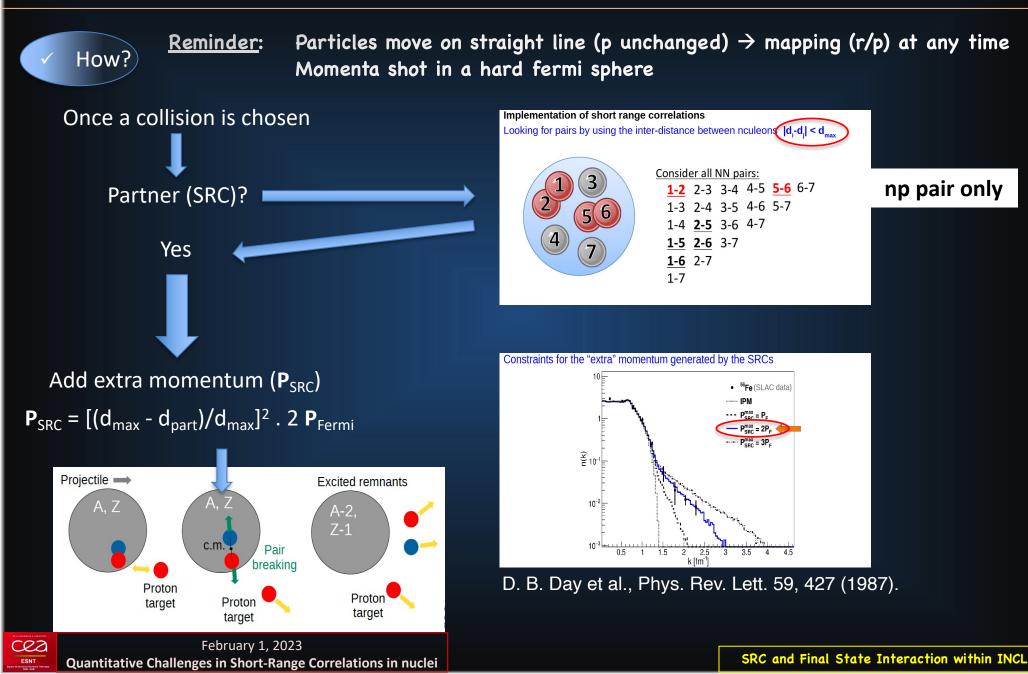

Momentum space: the two nucleons forming the pair have high relative momenta, but low center of mass momentum compared to the Fermi momentum



The presence of SRC pairs within any nucleus and their properties are important for understanding the nucleon-nucleon interaction and the nuclear momentum distributions

SRC could play a role during the cascade

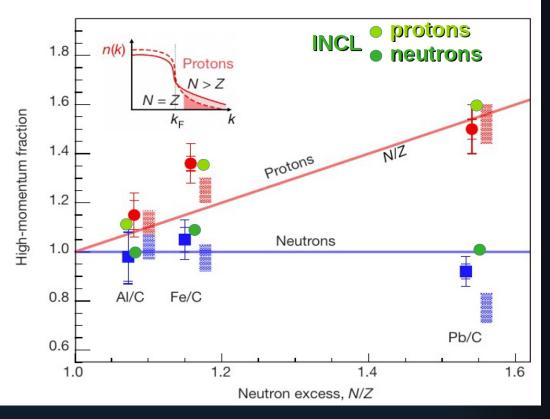
INCL mentioned in previous talks (ex., Fatima Hojeij)


February 1, 2023 Quantitative Challenges in Short-Range Correlations in nuclei

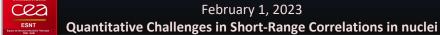
How? <u>Reminder</u>:

Particles move on straight line (p unchanged) \rightarrow mapping (r/p) at any time Momenta shot in a hard fermi sphere

February 1, 2023 Quantitative Challenges in Short-Range Correlations in nuclei

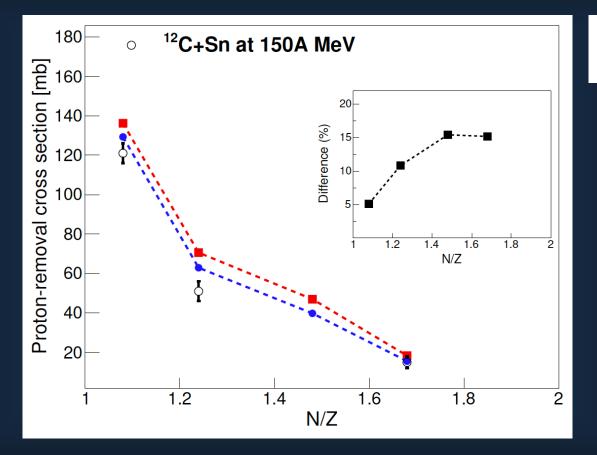

SRC IN INCL

Results


Test of our algorithm to add the extra (SRC) momentum

Evolution of the fraction of high momentum protons with the neutron excess

- Looking for all SRC pairs at the begining of each collision
- Selecting only nucleon pairs with high momentum (p > 300 MeV/c) in the c.m.
- INCL results show a good agreement with CLAS data



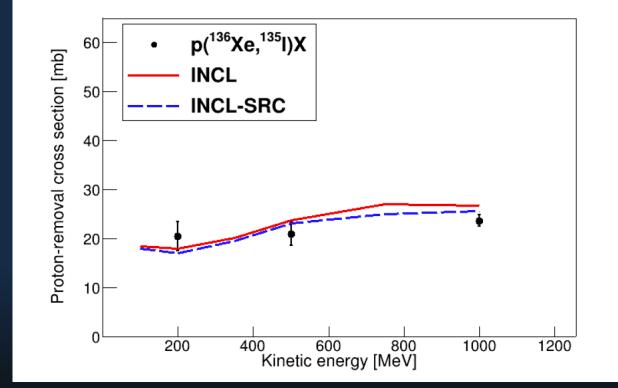
Original plot from M. Duer et al., Nature 560, 617 (2018)

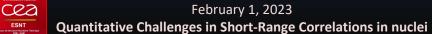
SRC INCL

Proton-removal

INCL -----INCL+SRC -----

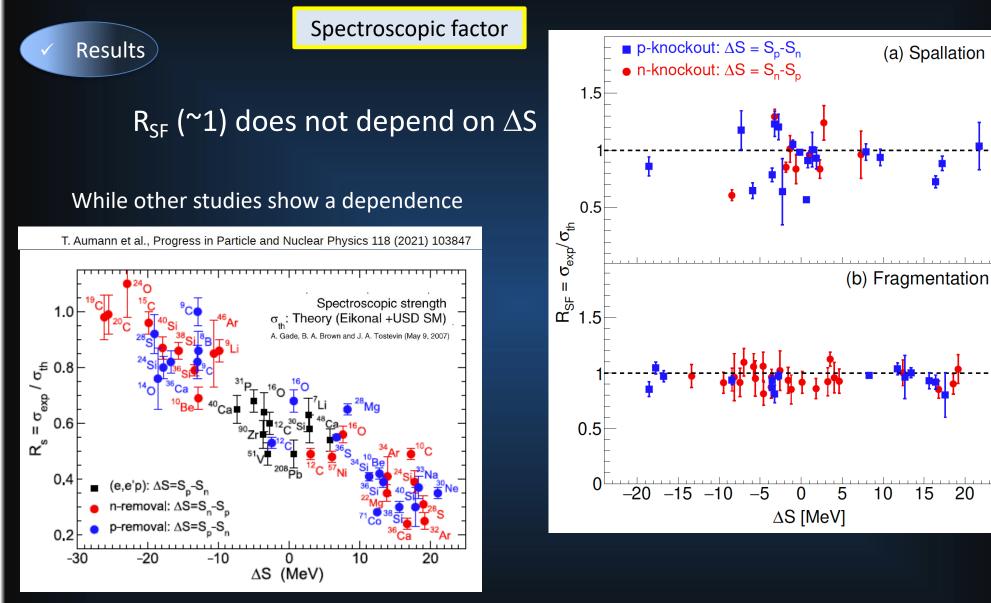
SRCs reduce the single proton-removal cross section (the greater the neutron excess) – $5\% \rightarrow 20\%$




Results

February 1, 2023 Quantitative Challenges in Short-Range Correlations in nuclei

Proton-removal


INCL results for proton-induced reactions still show a good agreement with data, nucleon removal cross sections only change around 5%

Results

SRC INCL

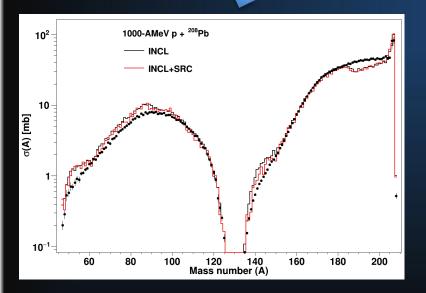
February 1, 2023 **Quantitative Challenges in Short-Range Correlations in nuclei**

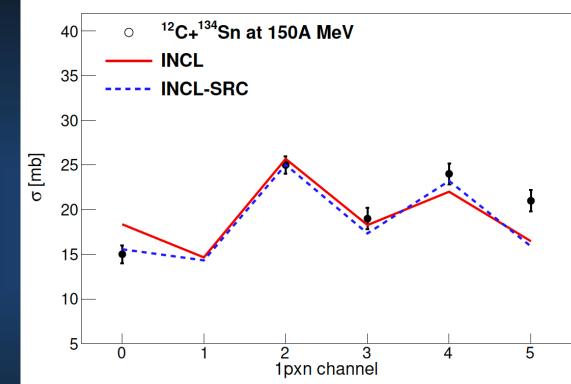
cea

ESNT

20

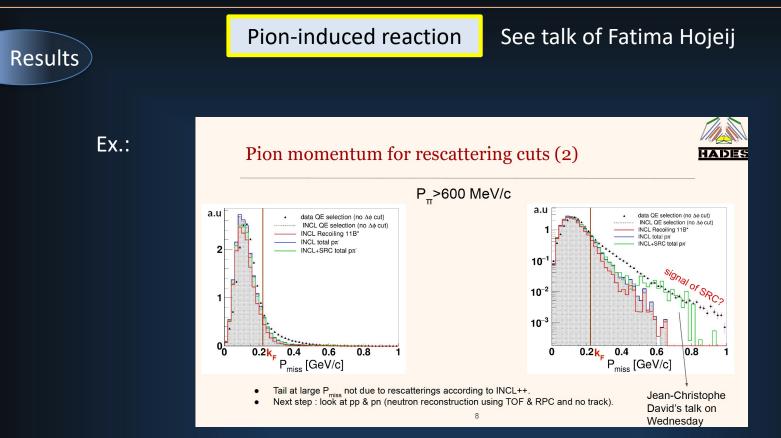
Residual production


Results


cea

ESNT

Few-nucleon removal directly related to SRC nucleons


Multi-nucleon removal channels populated by re-scattering with other nucleons

Cross section for the production of In isotopes (one-proton removal and several neutrons)

February 1, 2023 Quantitative Challenges in Short-Range Correlations in nuclei

Conclusions:

- P_{miss} & back-to-back
- pp pair should be added?
- → effects of SRC: maybe → if yes, small
- \rightarrow magnitude of the effect...

February 1, 2023 Quantitative Challenges in Short-Range Correlations in nuclei

Conclusions

SRC in INCL

Done for

And for np pair only

NN	NΔ	πN	$(\omega/\eta) N$	KN	\overline{K} N	ΛΝ	ΣN
NN	NN	πN	$(\omega/\eta) N$	KN	\overline{K} N	ΛΝ	ΣΝ
NΔ	$N(\Lambda/\Sigma)K$	Δ	$(\omega/\eta) N\pi$	K'N'	\overline{K}' N'	ΣN	$\Sigma ' \mathrm{N} '$
$NN\pi$	$\Delta(\Lambda/\Sigma) K$	$2\pi N$	$(\omega/\eta) \mathrm{N} 2\pi$	$KN\pi$	$\overline{K}\mathrm{N}\pi$		ΛN
$NN2\pi$	$NNK\overline{K}$	$3\pi N$		$\mathrm{KN}2\pi$	$\overline{K}\mathrm{N}2\pi$		
$NN3\pi$		$4\pi N$			$(\Lambda/\Sigma)\pi$		
$NN4\pi$		$(\omega(\eta)N)$			$(\Lambda/\Sigma)2\pi$		
$\mathrm{NN}(\omega/\eta)$		(Λ/Σ) K					
$\mathrm{NN}(\omega/\eta)\pi$		$(\Lambda/\Sigma) \mathrm{K}\pi$					
$\mathrm{NN}(\omega/\eta)2\pi$		$(\Lambda/\Sigma) \mathrm{K} 2\pi$					
$\mathrm{NN}(\omega/\eta)3\pi$		$\mathrm{NK}\overline{K}$					
$\mathrm{NN}(\omega/\eta)4\pi$							
$N(\Lambda/\Sigma)K$							
$N(\Lambda/\Sigma)K\pi$							
$N(\Lambda/\Sigma)K2\pi$							
$\mathrm{NNK}\overline{K}$							
NN-missing_strangeness							

Energy balance difficulties when more than two outgoing particles...

February 1, 2023 Quantitative Challenges in Short-Range Correlations in nuclei

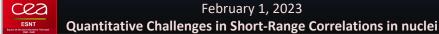
Conclusions

SRC in INCL

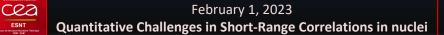
A challenge (hypotheses of INCL, energy balance)

But...

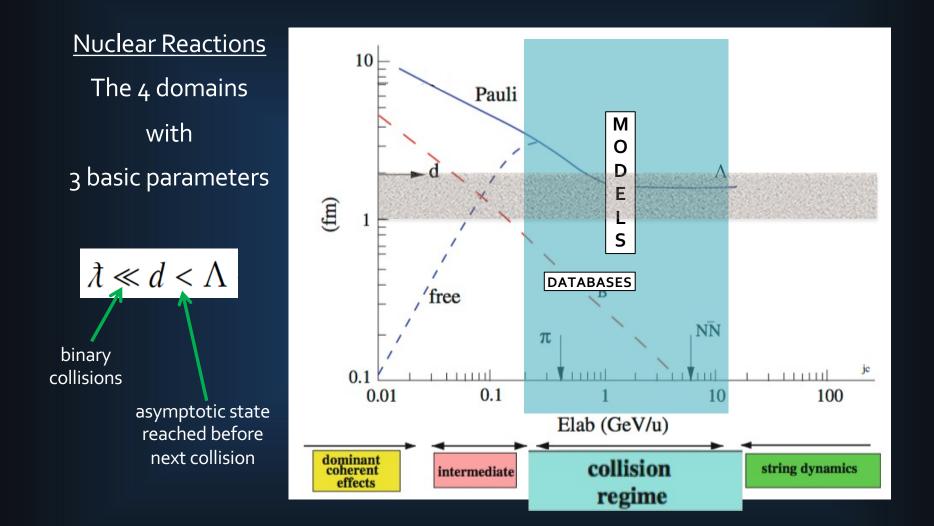
- Reasonable kinematic distributions for the nucleons involved in the SRCs
- Good agreement with the results obtained by the CLAS collaboration for the production of pairs
- (Small) improvement for single knockout cross sections
- No effect in case of multiple scattering
- No dependence with neutron/proton separation energy asymmetry
- ... To be finalized.



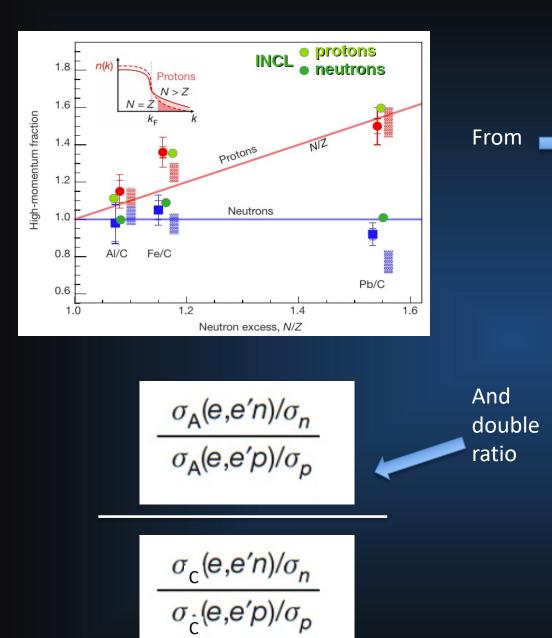
February 1, 2023 Quantitative Challenges in Short-Range Correlations in nuclei

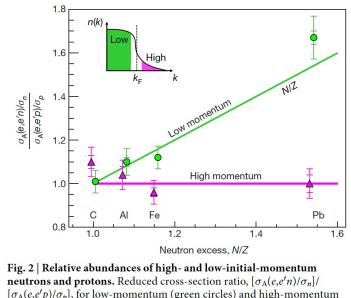

COLLABORATORS

Work done by J.L. Rodriguez-Sanchez within the INCL team



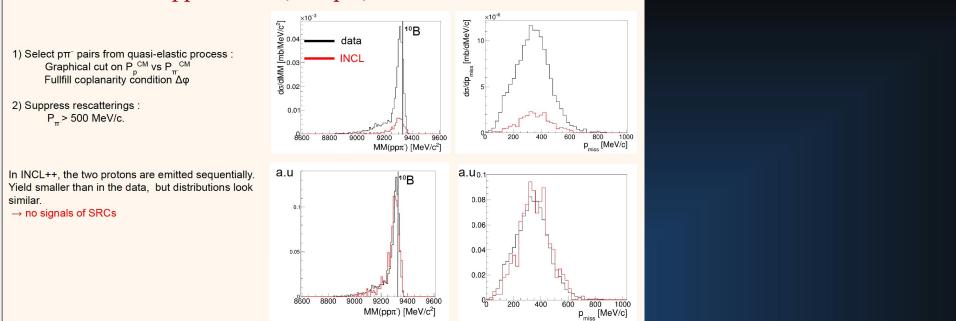
Thank you!




NUCLEAR REACTIONS

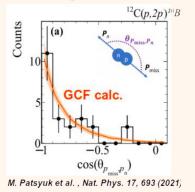
December 12, 2019

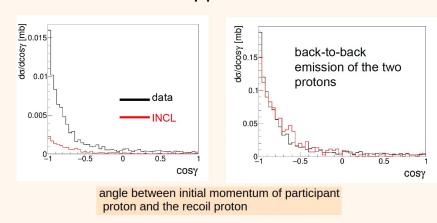
INCL, a nuclear reaction code ...



Institution of the second se

plot from M. Duer et al., Nature 560, 617 (2018)


Search of SRC in $pp\pi$ -events (I.Ciepal)


Angular correlation (1) (I.Ciepal)

we expect back-to-back scattering with SRC

0

ppπ⁻

Events from sequential emission also show the "back-to-back peaking"