Probing SRCs with high-energy photonuclear reactions at GlueX

Jackson Pybus

Plane-wave SRC breakup relies on two factorization scales

 $N' \qquad \sigma_{SRC} \sim K \cdot \sigma_{eN} \cdot S(p_i, p_{spec})$ $S \sim C_{NN} \cdot |\phi(k_{rel})|^2 \cdot n(p_{CM})$

Plane-wave SRC breakup relies on two factorization scales

5

Meson photoproduction

- Often a tool for hadron spectroscopy; can also be used as a probe of high-resolution nuclear structure
- Exclusive 2-body process:

•
$$\gamma + N \rightarrow m + B$$

- Can occur through *s*, *t*, *u*-channel exchanges
- Cross section weighted by constituent counting rules: $\frac{d\sigma}{dt}|_{\theta=90^{\circ}} \propto s^{-7}$

Electron-scattering reaction mechanisms complicate interpretation of data

7

Photoproduction reaction mechanisms differ significantly from electron-scattering

- No substantial radiative effects
- Kinematics prefer parallel kinematics, not antiparallel
 - Different effects of final-state interactions
- Different sensitivity to meson-exchange currents
- Less inelastic background
- Can give access to neutrons through charge-exchange channels

NIMA 987, 164807 (2021)

• 10.8 GeV electron beam incident on

- 10.8 GeV electron beam incident on diamond radiator
- Photon emitted via coherent bremsstrahlung; scattered electron tagged

-DIRC

- 10.8 GeV electron beam incident on diamond radiator
- Photon emitted via coherent bremsstrahlung; scattered electron tagged
- Real photon incident on nuclear targets: ²H, ⁴He, ¹²C

11

- 10.8 GeV electron beam incident on diamond radiator
- Photon emitted via coherent bremsstrahlung; scattered electron tagged
- Real photon incident on nuclear targets: ²H, ⁴He, ¹²C
- Final-state particles detected in largeacceptance GlueX detector

GlueX Spectrometer

- Large-acceptance detector
- Solenoidal magnet:
 - Good p_T resolution
 - Poor p_{z} resolution
- Time-of-flight allows particle identification for forward-going charged particles
- Calorimeters allows good acceptance and reconstruction of final-state photons

Fall 2021 Data

Target	Days of Beam	Luminosity (E _Y > 6 GeV)
Deuterium	4	18.0 nucleus · pb-1
Helium-4	10	16.7 nucleus · pb-1
Carbon-12	14	8.6 nucleus · pb-1

14

SRC studies using exclusive $A(\gamma, \rho^- pp)$ production

15

- Measure exclusive SRC breakup, with final-state $(\pi^{-}\pi^{0}pp)$
- Distinctive topology and exclusive detection helps to reduce background
- We require:
 - PWIA predictions
 - Clean SRC breakup data

- Measure exclusive SRC breakup, with final-state $(\pi^{-}\pi^{0}pp)$
- Distinctive topology and exclusive detection helps to reduce background
- We require:
 - PWIA predictions
 - Clean SRC breakup data

Plane-wave SRC Cross Section

$\sigma_{SRC} \sim K \cdot \sigma(\gamma n \to \rho^- p) \cdot S(p_i, p_{spec})$

- We require a single-body operator to input to our plane-wave model
- Deuterium data allows us to extract the shape of this cross section for quasi-free neutrons

 Detect photon showers in calorimeters, charged particles in drift chambers

19

Measuring $\gamma n \rightarrow \rho^- p$ from deuterium

- Detect photon showers in calorimeters, charged particles in drift chambers
- In quasi-free case, spectator proton is low momentum, but missing mass can be restricted

Measuring $\gamma n \rightarrow \rho^- p$ from deuterium

- Detect photon showers in calorimeters, charged particles in drift chambers
- In quasi-free case, spectator proton is low momentum, but missing mass can be restricted
- Invariant mass of 2-pion system used to determine ρ^- yields

Measuring $\gamma n \rightarrow \rho^- p$ from deuterium

- Detect photon showers in calorimeters, charged particles in drift chambers
- In quasi-free case, spectator proton is low momentum, but missing mass can be restricted
- Invariant mass of 2-pion system used to determine ρ^- yields
- Comparison to phase-space generator allows extraction of cross section shape

- Measure exclusive SRC breakup, with final-state $(\pi^{-}\pi^{0}pp)$
- Distinctive topology and exclusive detection helps to reduce background
- We require:
 - PWIA predictions
 - Clean SRC breakup data

Detector resolution limits missing momentum reconstruction

NIMA 987, 164807 (2021)

Analysis on the light-front

Parton in Hadron

Parton momentum fraction $x_B = \frac{Q^2}{2p_N \cdot q} \rightarrow \frac{E_q - p_q^z}{E_N - p_N^z}$

Nucleon in Nucleus

Nucleon momentum fraction

$$\alpha_N \equiv A \frac{E_N - p_I^2}{E_A - p_A^2}$$

Analysis on the light-front

Parton in Hadron

Parton momentum fraction $x_B = \frac{Q^2}{2p_N \cdot q} \rightarrow \frac{E_q - p_q^z}{E_N - p_N^z}$

Nucleon in Nucleus

Nucleon momentum fraction

$$\alpha_N \equiv A \frac{E_N - p_I^2}{E_A - p_A^2}$$

Light-front variables mitigate resolution effects

V

I

Analysis on the light-front

Parton in Hadron

Parton momentum fraction $x_B = \frac{Q^2}{2p_N \cdot q} \rightarrow \frac{E_q - p_q^z}{E_N - p_N^z}$

Nucleon in Nucleus

Nucleon momentum fraction

$$\alpha_N \equiv A \frac{E_N - p_I^2}{E_A - p_A^2}$$

Light-front variables mitigate resolution effects

> Low-momentum nucleon $\alpha_N \sim 1$

Standing nucleon pair $\alpha_1 + \alpha_2 \equiv \alpha_{CM} \sim 2$

Exclusive deuteron breakup clear in data

Pair breakup

Exclusive deuteron breakup clear in data

Pair breakup

Diffractive pion production kinematics

Combining these identifiers helps us to isolate exclusive deuterium events for $(\gamma d \rightarrow \pi^{-} \pi^{0} pp)$

Combining these identifiers helps us to isolate exclusive deuterium events for $(\gamma d \rightarrow \pi^{-} \pi^{0} pp)$

SRC events more spread out but still clear in data

• Diffractive background cut

- Diffractive background cut
- High relative momentum cut

- Diffractive background cut
- High relative momentum cut
- Cut on rho meson mass

- Diffractive background cut
- High relative momentum cut
- Cut on rho meson mass
- High momentum-transfer $|t|, |u| > 1 \text{ GeV}^2$

- Diffractive background cut
- High relative momentum cut
- Cut on rho meson mass
- High momentum-transfer $|t|, |u| > 1 \text{ GeV}^2$
- Compare with GCF calculations

- Reconstruct angle between initial-state neutron and spectator proton
- All nuclei show clear back-to-back correlation

SRC Center-of-Mass Momentum

- Transverse component of center-of-mass momentum used to limit FSI and cross section effects
- General trend with A agrees with current measurements, but precise value needs to be extracted and compared

Initial Neutron Momentum (Proxy)

- Initial neutron momentum sensitive to short-distance NN interaction
- Momentum distributions well-described
- Agreement with AV18 predictions similar to that for electron-scattering data

Initial Neutron Momentum (Proxy)

- Spectator momentum also wellreconstructed but shows possible signs of rescattering
- Calculation of FSI using cascade models can help identify regions of large FSI

Outlook

- wave predictions
 - effects, impact of |t| and |u| cuts
- Complementary ($\rho^0 pp$) channel allows access to pp pairs, enabling confirmation of isospin structure of SRCs
- modification

• Further study of systematics necessary to complete comparison to plane-

Sensitivity to photoproduction cross section, understanding of FSI

Other ongoing projects: color transparency, neutron structure, medium

Access to in-medium modification of photoproduction matrix elements

 Proton can be described as superposition of QCD Fock states:

 $|\text{proton}\rangle = \alpha_{PLC} |PLC\rangle + \alpha_{3qg} |3qg\rangle + \alpha_{3qq\bar{q}} |3qq\bar{q}\rangle + \dots$

Access to in-medium modification of photoproduction matrix elements

 Proton can be described as superposition of QCD Fock states:

 $|\operatorname{proton}\rangle = \alpha_{PLC} |\operatorname{PLC}\rangle + \alpha_{3qg} |3qg\rangle + \alpha_{3qq\bar{q}} |3qq\bar{q}\rangle + \dots$

Bound proton is known to have some modified structure from EMC effect:

 $|\operatorname{proton}^*\rangle = \alpha_{PLC}^* |\operatorname{PLC}\rangle + \alpha_{3qg}^* |3qg\rangle + \alpha_{3qq\bar{q}}^* |3qq\bar{q}\rangle + \dots$

 Photoproduction channels have different sensitivity to proton Fock states

Access to in-medium modification of photoproduction matrix elements

• Proton can be described as superposition of QCD Fock states:

 $|\text{proton}\rangle = \alpha_{PLC} |\text{PLC}\rangle + \alpha_{3qg} |3qg\rangle + \alpha_{3qq\bar{q}} |3qq\bar{q}\rangle + \dots$

• Bound proton is known to have some modified structure from EMC effect:

 $|\operatorname{proton}^*\rangle = \alpha_{PLC}^* |\operatorname{PLC}\rangle + \alpha_{3ag}^* |3qg\rangle + \alpha_{3ag\bar{q}}^* |3qq\bar{q}\rangle + \dots$

- Photoproduction channels have different sensitivity to proton Fock states
- Example: Comparing π^0 with η gives access to $(s\bar{s})$ content of the proton

Access to in-medium modification of photoproduction matrix elements

 Proton can be described as superposition of QCD Fock states:

 $|\operatorname{proton}\rangle = \alpha_{PLC} |\operatorname{PLC}\rangle + \alpha_{3qg} |3qg\rangle + \alpha_{3qq\bar{q}} |3qq\bar{q}\rangle + \dots$

 Bound proton is known to have some modified structure from EMC effect:

 $|\operatorname{proton}^*\rangle = \alpha_{PLC}^* |\operatorname{PLC}\rangle + \alpha_{3qg}^* |3qg\rangle + \alpha_{3qq\bar{q}}^* |3qq\bar{q}\rangle + \dots$

- Photoproduction channels have different sensitivity to proton Fock states
- Example: Comparing π^0 with η gives access to $(s\bar{s})$ content of the proton

Conclusions

 New high-energy photonuclear data provides independent measure of nuclear SRC properties

Conclusions

- New high-energy photonuclear data provides independent measure of nuclear SRC properties
- SRC breakup events positively identified in data

Conclusions

- New high-energy photonuclear data provides independent measure of nuclear SRC properties
- SRC breakup events positively identified in data
- SRC properties so far consistent with electron-scattering results and theory calculations, but systematics need to be considered

Backup

"Internal" missing momentum k_{miss}

$$k = \sqrt{\frac{m^2 + k_\perp^2}{\alpha(2 - \alpha)}} - m$$

the NN interaction between the nucleons

"Internal" momentum defined in Frankfurt & Strikman 1981 Phys Rep.

 $\alpha^{2} = 1 + k_{3} / \sqrt{m^{2} + k^{2}}$.

In the light-front deuteron model this variable controls the magnitude of

"Internal" missing momentum k_{miss}

 Internal momentum can be calculated assuming a standing pair approximation, defining :

$$k_{miss} = m_N \sqrt{\frac{m_N^2 + p_{miss,\perp}^2}{p_{miss}^- (2m_N - p_{miss}^-)} - 1}$$

the GlueX detector

• This variable can be calculated using only quantities well-measured in

SRC center-of-mass motion consistent between probes

CM momentum width extracted from electron-scattering data

PRL 121, 092501 (2018)

Neutron initial momentum sensitive to NN interaction

Nature 578, 540 (2020)

Missing and Recoil Lightcone Fraction

- Distortion possible indication of incorrect γN cross section modeling
 - Strong cross section energy-dependence has large impact on α distributions
- FSI should also be considered as possible cause of distortion

Missing and Recoil Lightcone Fraction

- Distortion possible indication of incorrect γN cross section modeling
 - Strong cross section energy-dependence has large impact on α distributions
- FSI should also be considered as possible cause of distortion

