Nuclear Physics Opportunities at Hall D: The Gluonic Content of Light Nuclei

Jackson Pybus

Motivation for high-statistics photonuclear data

- Currently ~1.5 months of nuclear data in Hall D (not including PrimeX)
- Sufficient to establish SRC breakup in high-statistics channels, but further data could be used
 - Study of |t|-dependence of SRC
 breakup data
 - Low-rate channels could be the most interesting

Target	Days of Beam	Luminosity (E _Y > 6 GeV)
Deuterium	4	18.0 nucleus pb-1
Helium-4	10	16.7 nucleus pb-1
Carbon-12	14	8.6 nucleus · pb-1

Motivation for high-statistics photonuclear data

- Currently ~1.5 months of nuclear data in Hall D (not including PrimeX)
- Sufficient to establish SRC breakup in high-statistics channels, but further data could be used
 - Study of |t|-dependence of SRC
 breakup data
 - Low-rate channels could be the most interesting

Target	Days of Beam	Luminosity (E _Y > 6 GeV)
Deuterium	4	18.0 nucleus pb-1
Helium-4	10	16.7 nucleus pb-1
Carbon-12	14	8.6 nucleus · pb-1

J/ψ photoproduction from the proton

- J/ψ is neutral 1⁻⁻ meson \rightarrow "vacuum" channel with no quantum numbers exchanged
- Lack of intrinsic charm in the nucleon \rightarrow scattering is mediated by 2- or 3-gluon exchange
- Sensitive to gluon structure of the proton
- Leptonic $J/\psi \rightarrow e^+e^-$ decay relatively clean detection channel

GlueX energies probe the threshold production region

Total Cross Sections

Ali et al. PRL (2019)

|t|-Dependence / Gluonic Form Factor

J/ψ photoproduction data has many applications

Ali et al. PRL (2019)

Wang, Chen, Evslin, EPJ C (2020)

Mechanical/gluonic radius

Photoproduction from the nucleus

Coherent Photoproduction

- Nucleus intact in the final-state
- Tells us about the ground-state of the nucleus
- Physics interpretations: Gluon radius of the nucleus, nuclear trace anomaly, nuclear gGPDs

Incoherent Photoproduction

- Nucleus broken-up in the final state
- Tells us about fluctuations in the nucleus + bound nucleons within the nucleus
- Physics interpretations: Gluon content of the bound proton, neutron

7

- $J/\psi \rightarrow e^+e^-$ decay detected in drift chambers
 - PID from calorimeter energy deposition
- Leading proton detected in drift chambers
 - PID from time-of-flight

Barrel calorimeter

Binding effects in the gluonic content of the proton

- Semi-exclusive measurements let us compare weakly- and strongly-bound protons
- Compare J/ψ photoproduction on lowmomentum and high-momentum protons
- Deuteron preferred as exclusivity improves resolution

Comparing low- and high-momentum proton structure

Low-momentum / loosely bound

Statistical projection for 60 PAC days at 10.8 GeV energy 12 GeV would improve J/ψ rates, but background uncertainties need to be modeled

High-momentum / deeply bound

Sub-threshold production allows comparison of SRC abundances, but rates are limited

Deuterium

60 PAC days at 10.8 GeV → ~12 subthreshold events from deuterium

Hatta et al. PLB (2020)

- Neutron detection possible by looking at hits in calorimeters
- More work required to determine neutron efficiency and momentum resolution in GlueX spectrometer

Barrel calorimeter

Gluonic measurements of the neutron

- Look for a leading neutron with high momentum transfer
- At low missing momentum, we can measure gluon content of the quasi-free neutron
- Major challenge is determining neutron detection in GlueX

Hidden-color sensitivity in incoherent production

- Color-octet states in the deuteron open up new production diagrams in J/ψ production
- Enhancement of production cross section at high momentum points to non-nucleonic components

Brodsky et al. PLB (2001)

- Large J/ψ mass results in substantial momentum transfer to target
- Light nucleus ²H can be tagged to identify coherent production
 - dE/dx in drift chambers allows low-momentum PID
- Heavier nuclei need other options to remove incoherent background

Barrel calorimeter

First question: do we have the phase space?

12

- High J/ψ mass requires high momentum transfer near threshold, but form factor slope increases rapidly with A
- Need to understand the |t|
 -dependence of coherent
 production near threshold to
 determine if rates are sufficient

Second question: can we suppress backgrounds?

 $\begin{bmatrix} 4 \\ 3 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} \begin{bmatrix} 2$

- GlueX resolution insufficient to separate coherent and incoherent production with missing mass
- High-|t| coherent production from the deuteron could be tagged with high-momentum deuteron

Second question: can we suppress backgrounds?

- Heavier nuclei such as ⁴He move much slower and are unlikely to be reconstructed
- Possible to veto on detection of nuclear breakup productions in t₀ detector around target

Conclusions

- High-statistics photonuclear data could enable more detailed study of hard photonuclear reactions
- J/ψ production is especially interesting; can give insight into gluonic structure of the nucleus, including possible medium-modification effects
- Further work required to quantify achievable goals, desired luminosity and targets
- Input on possible photonuclear observables is welcome

Backup

Exclusive deuteron breakup significantly enhances J/ψ resolution

