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What is renormalization group (RG) resolution?

RG resolution on 𝜆 axis

Here: RG resolution is set by the largest momentum in low-energy wave functions 
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High and low RG resolution
• High RG resolution: One-body current operators suffice but 

with highly correlated wave functions
• Low RG resolution: Two-body current operators needed but 

with (comparatively) uncorrelated wave functions
• Operators do NOT become hard, which simplifies calculations!

• Experimental resolution is set by kinematics of probe 
à same at both RG resolutions

• Same observables but different physical interpretation!

• Rest of this talk:
• How can SRC calculations be carried out at low RG resolution?
• What can we describe with simple approximations?
• Connections to existing SRC phenomenology (e.g., GCF or LCA)
• Levinger constant example: scale/scheme dependence
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Changing RG resolution: Similarity RG (or SRG)

• Evolve to low RG resolution using the SRG
𝑂 𝑠 = 𝑈 𝑠 𝑂 0 𝑈! 𝑠

where 𝑠 = 0 → ∞ and 𝑈 𝑠 is  unitary
• SRG transformations decouple high- and 

low-momenta in the Hamiltonian

Fig. 1: Momentum space matrix elements of Argonne 
v18 (AV18) under SRG evolution in 1P1 channel.

[e.g., see Hergert, arXiv:2008.05061]

https://arxiv.org/abs/2008.05061
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• Evolve to low RG resolution using the SRG
𝑂 𝑠 = 𝑈 𝑠 𝑂 0 𝑈! 𝑠

where 𝑠 = 0 → ∞ and 𝑈 𝑠 is  unitary
• SRG transformations decouple high- and 

low-momenta in the Hamiltonian
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• In practice, solve differential flow equation
𝑑𝑂(𝑠)
𝑑𝑠

= [𝜂 𝑠 , 𝑂 𝑠 ]

where 𝜂 𝑠 ≡ &' (
&(

𝑈! 𝑠 = [𝐺, 𝐻 𝑠 ] is the 
SRG generator

• Trivial for one and two-body operators; 
routine for three-body operators

Fig. 1: Momentum space matrix elements of Argonne 
v18 (AV18) under SRG evolution in 1P1 channel.

Changing RG resolution: Similarity RG (or SRG)

[e.g., see Hergert, arXiv:2008.05061]

https://arxiv.org/abs/2008.05061
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SRC in AV18

Fig. 2: SRG evolution of deuteron wave function in 
coordinate space for AV18 and Gezerlis N2LO1.

1A. Gezerlis et al., Phys. Rev. C 90, 054323 (2014)

S-state

D-state

• AV18 wave functions have 
significant SRCs

• What happens to the wave 
functions under SRG 
transformations?

Changing RG resolution: Similarity RG (or SRG)



SRC in AV18 No SRC

Fig. 2: SRG evolution of deuteron wave function in 
coordinate space for AV18 and Gezerlis N2LO1.

S-state

D-state

S-state

D-state

1A. Gezerlis et al., Phys. Rev. C 90, 054323 (2014)

• SRC physics in AV18 is 
gone from wave function at 
low RG resolution

• Deuteron wave functions 
become soft and D-state 
probability decreases

• Observables such as 
asymptotic D-S ratio do not 
change

• Universal low-energy V 
à same wave functions

SRG evolved

Changing RG resolution: Similarity RG (or SRG)



• Soft wave functions at low RG resolution
• SRC physics shifts to the operators
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• Example: Calculate high RG resolution single-nucleon momentum 
distribution at low RG res. by evolving momentum projection operator 𝑎)

%𝑎):
𝑛* 𝑞 = 𝜓* 𝑎)

%𝑎) 𝜓* = 𝜓*$ 𝑈$𝑎)
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Fig. 3: Evolved 
momentum projection 
operator 𝑈!𝑎"
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# for 

several 𝜆 values 
where 𝑞 = 3 fm-1.

Consistent operator evolution



Initial operator is a discretized 
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SRG evolution induces smooth, 
low-momentum contributions

RG Scale

SRG evolution of hard potential does 
NOT make the reaction operator hard!

Fig. 3: Evolved 
momentum projection 
operator 𝑈!𝑎"

#𝑎"𝑈!
# for 

several 𝜆 values 
where 𝑞 = 3 fm-1.

Initial operator is a discretized 
delta function in momentum space

~𝛿(𝑘 − 𝑞)𝛿(𝑘) − 𝑞)

Consistent operator evolution
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• Expectation value is filtered to lower momentum at low RG resolution
• At low RG resolution, 3S1- 3S1 channel contributes to ~95% of the 

expectation value 
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Momentum distributions at low RG resolution

• Apply SRG transformations to momentum distribution operators
• Single-nucleon momentum distribution: 8𝑛*+ 𝒒 = 𝑎𝒒

!𝑎𝒒
• Pair momentum distribution: 8𝑛*+ 𝒒,𝑸 = 𝑎𝑸
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! 𝑎𝑸

""𝒒
! 𝑎𝑸
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𝑎𝑸
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""𝒒
! 𝑎𝑸

""𝒒
𝑎𝑸
"-𝒒

• Expand SRG transformation to 2-body level
$𝑈( = 1 +

1
4
*
𝑲,𝒌,𝒌,

𝛿𝑈(
- 𝒌, 𝒌, 𝑎𝑲

-.𝒌
/ 𝑎𝑲

-0𝒌
/ 𝑎𝑲

-0𝒌
!𝑎𝑲
-.𝒌

! +⋯

• 𝛿𝑈(
- term is fixed by SRG evolution on 𝐴 = 2 and inherits the symmetries of 𝑉11
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! +⋯

• 𝛿𝑈(
- term is fixed by SRG evolution on 𝐴 = 2 and inherits the symmetries of 𝑉11.

• Strategy for leading contributions: Apply Wick’s theorem to evaluate $𝑈( 3𝑛23 𝒒 $𝑈𝝀
/

and $𝑈( 3𝑛23 𝒒,𝑸 $𝑈𝝀
/, truncating 3-body and higher terms.

Momentum distributions at low RG resolution



• Example: Evolved single-nucleon momentum distribution

!𝑈! #𝑛"# 𝒒 !𝑈𝝀
%

≈ 𝑎𝒒
%𝑎𝒒 +

'
(
∑𝑲,𝒌[𝛿𝑈!

( 𝒌, 𝒒 − 𝑲
(
𝑎𝑲
&,𝒌
% 𝑎𝑲

&-𝒌
% 𝑎𝑲-𝒒𝑎𝒒 + 𝛿𝑈!

% ( 𝒒 − 𝑲
(
, 𝒌 𝑎𝒒

%𝑎𝑲-𝒒
% 𝑎𝑲

&-𝒌
𝑎𝑲
&,𝒌

]

+
1
4
2
𝑲,𝒌,𝒌.

𝛿𝑈!
( 𝒌, 𝒒 −

𝑲
2

𝛿𝑈!
% ( 𝒒 −

𝑲
2
, 𝒌′ 𝑎𝑲

(,𝒌
% 𝑎𝑲

(-𝒌
% 𝑎𝑲

(-𝒌
'𝑎𝑲
(,𝒌

'

• For an operator that probes high momentum (𝑞 ≫ 𝜆), the low-RG resolution wave function 
filters out the first few terms, leaving only the 𝛿𝑈𝛿𝑈% term

Momentum distributions at low-RG resolution



• Deuteron example

𝑛&' 𝒒 = (1 + δ𝑈)𝑎𝒒
%𝑎𝒒(1 + 𝛿𝑈%)

𝜓*"# 𝑎𝒒
%𝑎𝒒 𝜓*"#

Fig. 5: Contributions to deuteron momentum 
distribution with AV18 and 𝜆 = 1.35 fm-1.
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• For high-𝑞, the 𝛿𝑈(𝛿𝑈(
/ term dominates

≈ 2
𝑲,𝒌,𝒌.

!

𝛿𝑈! 𝒌, 𝒒 𝛿𝑈!
%(𝒒, 𝒌′)𝑎𝑲

(,𝒌
% 𝑎𝑲

(-𝒌
% 𝑎𝑲

(-𝒌
'𝑎𝑲
(,𝒌

'

Fig. 5: Contributions to deuteron momentum 
distribution with AV18 and 𝜆 = 1.35 fm-1.

Momentum distributions at low RG resolution



• For high-𝑞, the 𝛿𝑈(𝛿𝑈(
/ term dominates

≈ 2
𝑲,𝒌,𝒌.

!

𝛿𝑈! 𝒌, 𝒒 𝛿𝑈!
%(𝒒, 𝒌′)𝑎𝑲

(,𝒌
% 𝑎𝑲

(-𝒌
% 𝑎𝑲

(-𝒌
'𝑎𝑲
(,𝒌

'

≈ 𝐹!
"# 𝒒

(
2
𝑲,𝒌,𝒌.

!

𝐹!
56 𝒌 𝐹!

56(𝒌′)𝑎𝑲
(,𝒌
% 𝑎𝑲

(-𝒌
% 𝑎𝑲

(-𝒌
'𝑎𝑲
(,𝒌

'

Factorization: 𝛿𝑈( 𝒌, 𝒒 ≈ 𝐹(
56 𝒌 𝐹(

23(𝒒)

Fig. 5: Contributions to deuteron momentum 
distribution with AV18 and 𝜆 = 1.35 fm-1.

𝑈( 𝑘, 𝑞 =*
7

8

𝑘 𝜓7( 𝜓78 𝑞

Momentum distributions at low RG resolution

Anderson et al., PRC (2010); Bogner/Roscher, PRC (2012) 



• Factorization of SRG transformations implies scaling of high-𝑞 tails

• Consider ratio 9
"(𝒒)
9#(𝒒) for 𝑞 ≫ 𝜆,

Ψ(
= 𝑈(𝑎>

/𝑎>𝑈(
/ Ψ(

=

Ψ(
? 𝑈(𝑎>

/𝑎>𝑈(
/ Ψ(

? =
𝐹(
23 (𝒒)

-

𝐹(
23(𝒒) -

×
Ψ(
= ∑𝑲,𝒌,𝒌,

( 𝐹(
56 𝒌 𝐹(

56(𝒌′)𝑎𝑲
-.𝒌
/ 𝑎𝑲

-0𝒌
/ 𝑎𝑲

-0𝒌
!𝑎𝑲
-.𝒌

! Ψ(
=

Ψ(
? ∑𝑲,𝒌,𝒌,

( 𝐹(
56 𝒌 𝐹(

56(𝒌′)𝑎𝑲
-.𝒌
/ 𝑎𝑲

-0𝒌
/ 𝑎𝑲

-0𝒌
!𝑎𝑲
-.𝒌

! Ψ(
?

• High-𝑞 dependence cancels, leaving a ratio only sensitive to low-momentum physics

Momentum distributions at low RG resolution

Anderson et al., PRC (2010); Bogner/Roscher, PRC (2012); Chen et al., PRL (2017); Lynn et al., JPhysG (2020)



Factorization

• Factorization of SRG transformations implies scaling of high-𝑞 tails

• Consider ratio 9
"(𝒒)
9#(𝒒) for 𝑞 ≫ 𝜆,

Ψ(
= 𝑈(𝑎>

/𝑎>𝑈(
/ Ψ(

=

Ψ(
? 𝑈(𝑎>

/𝑎>𝑈(
/ Ψ(

? =
𝐹(
23 (𝒒)

-

𝐹(
23(𝒒) -

×
Ψ(
= ∑𝑲,𝒌,𝒌,

( 𝐹(
56 𝒌 𝐹(

56(𝒌′)𝑎𝑲
-.𝒌
/ 𝑎𝑲

-0𝒌
/ 𝑎𝑲

-0𝒌
!𝑎𝑲
-.𝒌

! Ψ(
=

Ψ(
? ∑𝑲,𝒌,𝒌,

( 𝐹(
56 𝒌 𝐹(

56(𝒌′)𝑎𝑲
-.𝒌
/ 𝑎𝑲

-0𝒌
/ 𝑎𝑲

-0𝒌
!𝑎𝑲
-.𝒌

! Ψ(
?

• High-𝑞 dependence cancels leaving ratio only sensitive to low-momentum physics

Factorization built into GCF model seen by flat 
ratio of pair momentum distributions 𝑛=(𝑞)
over universal two-body wave functions 
C𝜑(𝑞) - at high 𝑞

Figure from R. Cruz-Torres et al., Nat. Phys. 17, 306 (2021)



Why use low RG resolution?

• Ab initio methods that rely on 
low RG (soft) interactions can 
be widely applied!

• NOTE: SRC physics is not
missing from energies.

H. Hergert - Hirschegg 2023 - “Effective Field Theories for Nuclei and Nuclear Matter”, Hirschegg, Austria, Jan 16, 2023

Progress in Ab Initio Calculations
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• Ab initio methods that rely on 
low RG (soft) interactions can 
be widely applied!

• NOTE: SRC physics is not
missing from energies.

• What SRC physics can we 
describe using (very!) simple 
approximations at low res.?

Why use low RG resolution?

H. Hergert - Hirschegg 2023 - “Effective Field Theories for Nuclei and Nuclear Matter”, Hirschegg, Austria, Jan 16, 2023

Progress in Ab Initio Calculations
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• Ab initio methods that rely on 
low RG (soft) interactions can 
be widely applied!

• NOTE: SRC physics is not
missing from energies.

• What SRC physics can we 
describe using (very!) simple 
approximations at low res.?

• Try Hartree-Fock (HF) with a 
local density approximation 
(LDA) to evaluate nuclear 
matrix elements.

Why use low RG resolution?

H. Hergert - Hirschegg 2023 - “Effective Field Theories for Nuclei and Nuclear Matter”, Hirschegg, Austria, Jan 16, 2023

Progress in Ab Initio Calculations
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HF and LDA calculation (details)

• Evaluating SRG-evolved operator with low RG resolution wave functions Ψ./ >𝑈. 8𝑛*+ 𝒒 >𝑈𝝀
! Ψ.

/

• The � eU † term is negative at low momentum. The second term in Eq. (16) is subtracting

from the overall magnitude. The first term will give the number of particles in the

state ↵. The second term will reduce the normalization by about 5� 10%. Squaring

the expression in the absolute value gives about a 15% reduction. We interpret this

as the reduction coming from SRC pairs (since the second term corresponds to a

proton-nucleon correlated pair).

• The ✓(k⌧
F(R)� p) ultimately cuts out all missing momenta p above the Fermi sea.

• The state dependence is entirely in the s.p. momentum distribution �↵(p). The SRG

transformation itself does not depend on p.

• The missing momentum dependence p is driven by the s.p. momentum distribution

�↵(p) under the sharp cuto↵s of the ✓’s which also contain p.

• The factor of 16 in front of the second term is not the same as the factor in front of

the � eU term in the single-nucleon momentum distribution. This is due to the latter

combining the � eU and � eU † into one term, whereas in the former, there is only the � eU †

contribution, hence a factor of 2 di↵erence.

⇡
⌦
 A

�

��
h
a†qaq +

1

2

X

K,k

⇣
�U�(k,q�K/2)a†K/2+ka

†
K/2�kaK�qaq

+ �U †
�(q�K/2,k)a†qa

†
K�qaK/2�kaK/2+k

⌘

+
1

4

X

K,k,k0

�U�(k,q�K/2)�U †
�(q�K/2,k0)a†K/2+ka

†
K/2�kaK/2�k0aK/2+k0

i �� A
�

↵

(17)

8
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• Evaluating SRG-evolved operator with low RG resolution wave functions Ψ./ >𝑈. 8𝑛*+ 𝒒 >𝑈𝝀
! Ψ.

/

• Take continuum limit (suppressing spin and isospin labels): ∑𝒌 → ∫𝑑𝒌

• Evaluate matrix elements assuming B CΨ.
/ is occupied up to momentum 𝑘2 averaging over 

local Fermi momentum 𝑘23 𝑅 = (3𝜋4𝜌3 𝑅 )#/5:

Ψ!( 𝑎𝑲
)*𝒌
# 𝑎𝑲

),𝒌
# 𝑎𝑲

),𝒌
!𝑎𝑲

)*𝒌
! Ψ!

( ≈ B𝑑𝑹 𝛿 𝒌- − 𝒌 𝜃(𝑘./ 𝑅 − 𝑲/2 + 𝒌 )𝜃(𝑘./
! 𝑅 − 𝑲/2 − 𝒌 )

• The � eU † term is negative at low momentum. The second term in Eq. (16) is subtracting

from the overall magnitude. The first term will give the number of particles in the

state ↵. The second term will reduce the normalization by about 5� 10%. Squaring

the expression in the absolute value gives about a 15% reduction. We interpret this

as the reduction coming from SRC pairs (since the second term corresponds to a

proton-nucleon correlated pair).

• The ✓(k⌧
F(R)� p) ultimately cuts out all missing momenta p above the Fermi sea.

• The state dependence is entirely in the s.p. momentum distribution �↵(p). The SRG

transformation itself does not depend on p.

• The missing momentum dependence p is driven by the s.p. momentum distribution

�↵(p) under the sharp cuto↵s of the ✓’s which also contain p.

• The factor of 16 in front of the second term is not the same as the factor in front of

the � eU term in the single-nucleon momentum distribution. This is due to the latter

combining the � eU and � eU † into one term, whereas in the former, there is only the � eU †

contribution, hence a factor of 2 di↵erence.

⇡
⌦
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��
h
a†qaq +

1
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X

K,k

⇣
�U�(k,q�K/2)a†K/2+ka

†
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+ �U †
�(q�K/2,k)a†qa

†
K�qaK/2�kaK/2+k

⌘

+
1

4

X

K,k,k0

�U�(k,q�K/2)�U †
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HF and LDA calculation (details)
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• Angle-average to evaluate angular dependence of 𝒒 I 𝒌, 𝒒 I 𝑲, and 𝑲 I 𝒌 (defines angles 𝑥, 𝑦, and 𝑧)

E.g,
Z 1

�1

dz

2
✓(k⌧

F � |K/2 + k|)✓(k⌧ 0

F � |K/2� k|) =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

1 if k < kmin
F � K

2

(kmin
F )2�(k�K/2)2

2kK if k < kmin
F + K

2 and

kmin
F � K

2 < k < kmax
F � K

2

(kavgF )2�k2�K2/4

kK if kmax
F � K

2 < k and

k <
q

(kavg
F )2 � K2

4

0 otherwise

(18)

[1] J. Tostevin and A. Gade, Phys. Rev. C 90, 057602 (2014), arXiv:1409.6576 [nucl-th].

[2] W. Dickho↵ and D. Van Neck, Many-Body Theory Exposed! (World Scientific, 2005).

[3] T. Aumann et al., Prog. Part. Nucl. Phys. 118, 103847 (2021), arXiv:2012.12553 [nucl-th].

9

where 𝑲
)
+ 𝒌 = 0"

1
+ 𝑘) + 𝐾𝑘𝑧

HF and LDA calculation (details)

Tropiano et al. (2021)



• Angle-average to evaluate angular dependence of 𝒒 I 𝒌, 𝒒 I 𝑲, and 𝑲 I 𝒌 (defines angles 𝑥, 𝑦, and 𝑧)

E.g,

• Finally write in terms of partial waves using

⟩|𝒌#𝜎#𝜏#𝒌$𝜎$𝜏$ = #
$
∑%,'!

∑(,'"
∑),'#

∑*,'$ 𝜎#𝜎$ 𝑆𝑀% 𝜏#𝜏$ 𝑇𝑀*
$
+
𝑌(,'"
∗ (-𝑘) 𝐿𝑀(𝑆𝑀% 𝐽𝑀) 1 − (−1)(-%-* 4|𝑲𝑘(𝐿𝑆)𝐽𝑀)𝑇𝑀*

where 𝒌 ≡ 2
)
(𝒌2 − 𝒌)) and 𝑲 ≡ 𝒌2 + 𝒌)

Z 1

�1

dz

2
✓(k⌧

F � |K/2 + k|)✓(k⌧ 0

F � |K/2� k|) =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

1 if k < kmin
F � K

2

(kmin
F )2�(k�K/2)2

2kK if k < kmin
F + K

2 and

kmin
F � K

2 < k < kmax
F � K

2

(kavgF )2�k2�K2/4

kK if kmax
F � K

2 < k and

k <
q

(kavg
F )2 � K2

4

0 otherwise

(18)

[1] J. Tostevin and A. Gade, Phys. Rev. C 90, 057602 (2014), arXiv:1409.6576 [nucl-th].

[2] W. Dickho↵ and D. Van Neck, Many-Body Theory Exposed! (World Scientific, 2005).

[3] T. Aumann et al., Prog. Part. Nucl. Phys. 118, 103847 (2021), arXiv:2012.12553 [nucl-th].

9

where 𝑲
)
+ 𝒌 = 0"

1
+ 𝑘) + 𝐾𝑘𝑧

HF and LDA calculation (details)

Tropiano et al. (2021)



• Final formula for single-nucleon momentum distribution (𝜏 specifies proton or neutron) given by:

HF and LDA calculation (details)

Tropiano et al. (2021)



Example: proton momentum distributions

• Low RG resolution calculations reproduce momentum distributions of AV18 QMC 
calculations1 (high RG resolution) with no adjusted parameters or scaling!

1R.B. Wiringa et al., Phys. Rev. C 89, 024305 (2014)
https://www.phy.anl.gov/theory/research/momenta/
2K. Bennaceur et al., Comput. Phys. Commun. 168, 96 (2005)

Fig. 6: Proton momentum distributions for 12C, 16O, and 
40Ca under HF+LDA with AV18, 𝜆 = 1.35 fm-1, and 
densities from Skyrme EDF SLy4 using the HFBRAD 
code2.

Tropiano et al. (2021)



• Low RG resolution calculations reproduce momentum distributions of AV18 QMC 
calculations1 (high RG resolution) with no adjusted parameters or scaling!

Fig. 6: Proton momentum distributions for 12C, 16O, and 
40Ca under HF+LDA with AV18, 𝜆 = 1.35 fm-1, and 
densities from Skyrme EDF SLy4 using the HFBRAD 
code2.

1R.B. Wiringa et al., Phys. Rev. C 89, 024305 (2014)
https://www.phy.anl.gov/theory/research/momenta/
2K. Bennaceur et al., Comput. Phys. Commun. 168, 96 (2005)

• Good description of high-𝑞 tail where inputs are 
only nucleonic densities and 2-body physics

• Inadequate treatment near Fermi surface (LRCs)
• Takes only a few minutes on a laptop
• Low RG works well for SRC physics with simple 

approximations and is systematically improvable!

Example: proton momentum distributions

Tropiano et al. (2021)



• Universality: High-𝑞 dependence from 
universal function ≈ 𝐹(

23 𝑞
-

fixed by 
2-body and insensitive to nucleus

Fig. 7: Proton momentum distributions under 
HF+LDA with AV18 and 𝜆 = 1.35 fm-1, showing 
several nuclei.

Example: proton momentum distributions

Tropiano et al. (2021)



Fig. 7: Proton momentum distributions under 
HF+LDA with AV18 and 𝜆 = 1.35 fm-1, showing 
several nuclei.

Consistent with universal high-𝑞 tails from QMC calculations 
of R. B. Wiringa et al., Phys. Rev. C 89, 024305 (2014)

Example: proton momentum distributions

Tropiano et al. (2021)



SRC scaling factors
• SRC scaling factors 𝑎( defined by plateau in 

cross section ratio (73
874

at 1.45 ≤ 𝑥 ≤ 1.9

• Closely related to the ratio of bound-nucleon 
probability distributions in the limits of 
vanishing relative distance (infinitely high 
relative momentum)

• Extract 𝑎( from momentum distributions1

𝑎( = lim
9→;

𝑃8(𝑞)
𝑃<(𝑞) ≈

∫=95675 𝑑𝑞𝑃
8(𝑞)

∫=95675 𝑑𝑞𝑃
<(𝑞)

where 𝑃8 𝑞 is the single-nucleon probability 
distribution in nucleus A (cf. LCA)Fig. 8: Ratio of per-nucleon electron scattering cross 

section of nucleus A to that of deuterium, where the red 
line indicates a constant fit. Figure from B. Schmookler
et al. (CLAS), Nature 566, 354 (2019).

LETTER RESEARCH

We also constrained the internal structure of the free neutron using 
the extracted universal modification function and we concluded that 
in neutron-rich nuclei the average proton structure modification will 
be larger than that of the average neutron.

We analysed experimental data taken using CLAS (CEBAF Large 
Acceptance Spectrometer)23 at the Thomas Jefferson National 
Accelerator Facility (Jefferson Laboratory). In our experiment, a  
5.01-GeV electron beam impinged upon a dual target system with a 
liquid deuterium target cell followed by a foil24 of either C, Al, Fe or 
Pb. The scattered electrons were detected in CLAS over a wide range of 
angles and energies, which enabled the extraction of both quasi-elastic 
and DIS reaction cross-section ratios over a wide kinematical region 
(see Supplementary Information section I).

The electron scattered from the target by exchanging a single virtual 
photon with momentum q and energy ν, giving a four-momentum trans-
fer of Q2 = |q|2 – ν2. We used these variables to calculate the invariant 
mass of the nucleon plus virtual photon, W2 = (m + ν)2 − |q|2 (where 
m is the nucleon mass), and the Bjorken scaling variable xB = Q2/(2mν).

We extracted cross-section ratios from the measured event yields by 
correcting for effects of the experimental conditions, acceptance and 
momentum reconstruction, as well as reaction effects and bin-centring 
effects (see Supplementary Information section I). To our knowledge, 
this was the first precision measurement of inclusive quasi-elastic scat-
tering for SRCs in both Al and Pb, as well as the first measurement of 
the EMC effect on Pb. For other measured nuclei our data are consistent 
with previous measurements, but with reduced uncertainties.

The DIS cross-section on a nucleon can be expressed as a function 
of a single structure function, F2(xB, Q2). In the parton model, xB  
represents the fraction of the nucleon momentum carried by the  
struck quark. F2(xB, Q2) describes the momentum distribution of the 
quarks in the nucleon, and the ratio / / /F x Q A F x Q[ ( , ) ] [ ( , ) 2]2

A
B

2
2
d

B
2  

describes the relative quark momentum distributions in a nucleus A 
with mass number A and deuterium2,7 (d). For brevity, we often omit 
explicit reference to xB and Q2—that is, we write /F F2

A
2
d—with the 

understanding that the structure functions are being compared at iden-
tical xB and Q2 values. Because the DIS cross-section is proportional to 
F2, experimentally the cross-section ratio of two nuclei is assumed to 
equal their structure-function ratio1,2,6,7. The magnitude of the EMC 
effect is defined by the slope of either the cross-section ratios or the 
structure-function ratios for 0.3 ≤ xB ≤ 0.7 (see Supplementary 
Information sections IV and V).

Similarly, the relative probability for a nucleon to belong to an SRC 
pair is interpreted as equal to a2, which denotes the average ratio 
of the inclusive quasi-elastic electron scattering cross-section per 
nucleon of nucleus A to that of deuterium at momentum transfer1,11–15 
Q2 > 1.5 GeV2 and 1.45 ≤ xB ≤ 1.9 (see Supplementary Information 
section III).

Other nuclear effects are expected to be negligible. The contribu-
tion of three-nucleon SRCs should be an order of magnitude smaller 
than the SRC-pair contributions. The contributions of two-body cur-
rents (called ‘higher-twist effects’ in DIS) should also be small (see 
Supplementary Information section VIII).

Figure 1 shows the DIS and quasi-elastic cross-section ratios for 
scattering off a solid target relative to deuterium as a function of xB. 
The red lines are fits to the data that are used to determine the EMC-
effect slopes or SRC scaling coefficients (see Extended Data Tables 1, 2). 
Typical 1σ cross-section-ratio normalization uncertainties of 1%–2% 
directly contribute to the uncertainty in the SRC scaling coefficients but 
introduce negligible uncertainty in the EMC slope. None of the ratios 
presented has isoscalar corrections (cross-section corrections for une-
qual numbers of protons and neutrons), in contrast to much published 
data. We did not apply such corrections for two reasons: (1) to focus 
on asymmetric nuclei and (2) because isoscalar corrections are model- 
dependent and differ among experiments9,10 (see Extended Data Fig. 1).

The DIS data were cut at Q2 > 1.5 GeV2 and W > 1.8 GeV, which 
is just above the resonance region25 and higher than the W > 1.4 GeV 
cut used in previous Jefferson Laboratory measurements10. The 
extracted EMC slopes are insensitive to variations in these cuts over 
Q2 and W ranges of 1.5−2.5 GeV2 and 1.8−2 GeV, respectively (see 
Supplementary Information Table 7).

Motivated by the correlation between the magnitude of the EMC 
effect and the SRC-pair density (a2), we model the modification of the 
nuclear structure function, F2

A, as entirely caused by the modification 
of np SRC pairs. F2

A is therefore decomposed into contributions from 
unmodified mean-field protons and neutrons (the first and second 
terms in equation (1)) and np SRC pairs with modified structure func-
tions (third term):

= − + − + +

= + + ∆ + ∆

∗ ∗F Z n F N n F n F F

ZF NF n F F

( ) ( ) ( )

( )
(1)

p n p n

p n p n

2
A
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2 2

2 2 SRC
A

2 2

This work
Ref. 11

xB

0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.8 1.0 1.2 1.4 1.6 1.8 2.0

m

12C 27Al

56Fe56Fe 208Pb

e

g

f

h

0.8

0.9

1.0

1.1

This work
Ref. 9

Ref. 10

0.2 0.3 0.4 0.5 0.6

0.8

0.9

1.0

1.1

0.2 0.3 0.4 0.5 0.6

12C 27Al

208Pb

xB

a b

c d

8

6

4

2

8

6

4

2

(V
A
/A

)/(
V d

/2
)

(V
A
/A

)/(
V d

/2
)

Fig. 1 | DIS and quasi-elastic (e,e′) cross-section ratios. a–d, Ratio 
of the per-nucleon electron scattering cross-section of nucleus A 
(A = 12C (a), 27Al (b), 56Fe (c) and 208Pb (d)) to that of deuterium for DIS 
kinematics (0.2 ≤ xB ≤ 0.6 and W ≥ 1.8 GeV). The solid points show 
the data obtained in this work, the open squares show SLAC (Stanford 
Linear Accelerator Center) data9 and the open triangles show Jefferson 

Laboratory data10. The red lines show a linear fit. e, f, Corresponding 
ratios for quasi-elastic kinematics (0.8 ≤ xB ≤ 1.9). The solid points show 
the data obtained in this work and the open squares the data of ref. 11. The 
red lines show a constant fit. The error bars shown include both statistical 
and point-to-point systematic uncertainties, both at the 1σ or 68% 
confidence level. The data do not include isoscalar corrections.
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𝑎H

1J. Ryckebusch et al., Phys. Rev. C 100, 054620 (2019)



𝑎- = lim
>→8

𝑃=(𝑞)
𝑃?(𝑞) ≈

∫Q>*+,* 𝑑𝑞𝑃
=(𝑞)

∫Q>*+,* 𝑑𝑞𝑃
?(𝑞)

• High momentum behavior is characterized 
by 2-body 𝐹(23 𝑞

-
which cancels leaving 

ratio of mean-field (low-𝑘) physics
• Good agreement with 𝑎- values from 

experiment3 and LCA calculations4 using 
two different EDFs

• Error bars from varying Δ𝑞23R2

1E. Chabanat et al., Nucl. Phys. A 635, 231 (1998)
2J. Decharge et al., Phys. Rev. C 21, 1568 (1980)
3B. Schmookler et al. (CLAS), Nature 566, 354 (2019)
4J. Ryckebusch et al., Phys. Rev. C 100, 054620 (2019)

Fig. 9: 𝑎% scale factors using single-nucleon 
momentum distributions under HF+LDA (SLy4 
in red1, Gogny2 in blue) with AV18 and 𝜆 = 1.35
fm-1 compared to experimental values3.

SRC scaling factors

Tropiano et al. (2021)



SRC phenomenology

• At high RG resolution, 
the tensor force and the 
repulsive core of the NN 
interaction kicks nucleon 
pairs into SRCs

• np dominates because 
the tensor force requires 
spin triplet pairs, whereas 
pp are spin singlets

• Do we describe this 
physics at low RG 
resolution?
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FIG. 3: Left: The measured fractions of triple coincidence events (C(e, e0pN)/C(e, e0p)), compared with GCF predictions
accounting for the variety of e↵ects that influence the measurement (e.g. CLAS detector acceptance, e�ciency, and resolution,
FSIs including SCX, and the event-selection procedure). The C(e, e0pp)/C(e, e0p) data (blue triangles) are taken from Ref. [10],
while the C(e, e0pn)/C(e, e0p) data (red circles) are from this work. Right: The GCF prediction for the ground-state fractions
of pn and pp pairs as a function of pair relative momentum, calculated using the AV18 and N2LO NN interactions. The dashed
line marks the scalar limit, see text for details. The width of the GCF calculation bands shows their 68% confidence interval
due to uncertainties on the model parameters.

e�ciency, and momentum reconstruction resolution.

Similar to previous SRC studies [6–10], we considered
events with scattered electron kinematics of Q2 ⌘ |~q|2 �
!2 > 1.5 GeV2/c2 and xB ⌘ Q2/2mN! > 1.1, wheremN

is the nucleon mass, while ~q and ! are the 3-momentum
and energy transferred to the nucleus by the electron,
respectively. Assuming the electron scatters from a single
nucleon that does not reinteract as it leaves the nucleus
with momentum ~pf , the initial nucleon momentum ~pi
can be approximated as equal to the measured missing-
momentum: ~pi ⇡ ~pmiss ⌘ ~pf � ~q.

If the struck nucleon is part of a 2N -SRC pair, we
interpret the reaction through the SRC break-up model
where a correlated partner nucleon is assumed to exist
as an on-shell spectator carrying momentum ~precoil. For
an SRC pair with center-of-mass momentum ~pCM ⌘ ~pi+
~precoil, the residual A � 2 system will carry momentum
�~pCM , and may carry excitation energy denoted here by
E⇤. We also define the missing energy, Emiss ⌘ mN �
mA +

p
(! +mA � Ef )2 � p2miss, where mA is the mass

of the target nucleus and Ef is the energy of the leading
proton detected in the final state.

Following previous works [6–10], we selected 12C(e, e0p)
events in kinematics where the dominant reaction is
the scattering o↵ SRC pairs. Specifically, 12C(e, e0p)
events were required to have xB > 1.1 which sup-
presses contributions from isobar currents, 300 < pmiss <
1000 MeV/c that enhances contributions from interac-
tions with high initial momentum nucleons, an angle be-
tween ~pf and ~q smaller than 25�, 0.62 < |~pf |/|~q| < 0.96
that allows identifying a leading nucleon, and Mmiss ⌘

q
(qµ � pµf + 2mN )2 < 1.1 GeV/c2 that suppress reso-

nance productions.

Triple coincidence 12C(e, e0pn) events were selected
from the 12C(e, e0p) event sample by requiring a neu-
tron candidate in the TOF counters. We only considered
neutrons with momentum between 300 and 1000 MeV/c.
The triple coincidence signal sits on top of a similar-size
uncorrelated random background. This background is
uniformly random in neutron hit time, allowing it to be
estimated from o↵-time neutrons and subtracted. More
details on the event selection and background subtraction
can be found in the online supplementary materials.

Figure 1 shows the cosine of the angle between ~pmiss

and ~precoil for 12C(e, e0pn) events after random coinci-
dence background subtraction. While the recoil neutron
selection criteria do not place any angular requirements,
the measured distribution shows the back-to-back corre-
lation characteristic of SRC breakup events.

The measured distributions are compared to theoret-
ical predictions based on the GCF [37, 38, 42, 49] us-
ing the local AV18 [57] and N2LO(1.0) [58] NN interac-
tion models. The GCF assumes scale-separation between
the short-distance interactions within an SRC pair, and
the long-range interactions between the pair and the rest
of the nucleus, as well as their mutual separation from
the ultra-short distance scale associated with the high-
energy virtual photon probe. This scale separation per-
mits a factorized approximation for describing the scat-
tering cross-section, in which the hard break-up of an
SRC pair proceeds via a reaction in which the virtual
photon is absorbed by a single nucleon in an SRC pair,

Fig. 10: (a) Ratio of two-nucleon to single-nucleon electron-scattering cross sections for 
carbon as a function of missing momentum. (b) Fraction of np to p and pp to p pairs versus 
the relative momentum. Figure from CLAS collaboration publication1.

Scalar limit
np includes 1S0 and 3S1-3D1

1I. Korover et al. (CLAS), arXiv:2004.07304 (2014)



• At low RG resolution, SRCs are suppressed in 
the wave function and shifted into the operator

3𝑛56 𝒒 = $𝑈(𝑎𝒒
/𝑎𝒒$𝑈(

/ → 𝑈((𝒌, 𝒒)𝑈(
/(𝒒, 𝒌,)

• Take ratio of 3S1 and 1S0 SRG transformations 
fixing low-momenta to 𝑘S = 0.1 fm-1

• This physics is established in the 2-body 
system – will apply to any nucleus!

Fig. 11: 3S1 to 1S0 ratio of SRG-evolved momentum 
projection operators 𝑎.

/𝑎. where 𝜆 = 1.35 fm-1.

np dominance

Scalar limit

SRC phenomenology

Tropiano et al. (2021)



• Low RG resolution picture reproduces the 
characteristics of cross section ratios using 
simple approximations

• Weak nucleus dependence from factorization

Fig. 12: pp/pn ratio of pair momentum distributions 
under HF+LDA with AV18 and 𝜆 = 1.35 fm-1.
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• Ratio ~1 independent of N/Z in np 
dominant region

• Ratio < 1 for nuclei where N > Z and 
outside np dominant region 

np dominance

Fig. 13: (pp+pn)/(nn+np) ratio of pair 
momentum distributions under HF+LDA
with AV18 and 𝜆 = 1.35 fm-1.

SRC phenomenology

Tropiano et al. (2021)



Quasi-deuteron model
• Introduced by Levinger to explain knock-out of high-

energy protons in photo-absorption on nuclei at 
energies of order 100 MeV

• High RG resolution: emitted protons from pn SRCs 
with deuteron quantum numbers (“quasi-deuterons”)

• So cross section should be proportional to photo-
disintegration of deuteron:

• Defines Levinger constant L
• GCF (R. Weiss et al., 2015,2016): L given by ratio of high-

momentum distributions (similar to a2) à depends 
on “contacts”

• Low RG resolution: take ratio of evolved operators

Ratios of evolved
mom. dists. to d

Plateau despite
>100 variation in
this range of q

Colored points: L
extracted from data

Black points: L
from evolved 
mom. dists.

Tropiano et al. (2022)



Levinger constant: Scale and scheme dependence

• Varying the NN interaction changes the values of 𝐿
• Hard interactions give high 𝐿 values and soft

interactions give low 𝐿 values
• But a ratio of cross sections should be RG invariant! 

So why is there sensitivity to the interaction?
• We’ve assumed only an initial one-body operator!

• Strategy: Match results using a reference momentum 
distribution (AV18)

• One-body initial operator for AV18
• Two-body initial operator for soft potentials

Average Levinger constant for several nuclei 
comparing different NN interactions. Tropiano et al. (2022)



Matching interactions
Inverse-SRG evolution of the deuteron wave 
function from SMS N4LO 550 MeV comparing to 
AV18. The solid lines correspond to the S states, 
and the dashed lines correspond to the D states.

• Use inverse SRG to match potentials at a scale 𝜆9:

𝐻:;<=(𝜆9) = 𝑈>?@A
! (𝜆9)𝐻:;<=(∞)𝑈>?@A(𝜆9)

• Use deuteron wave functions to find matching scale 𝜆9
(other matching procedures also work)

Tropiano et al. (2022)



• Use inverse SRG to match potentials at a scale 𝜆9

𝐻:;<=(𝜆9) = 𝑈>?@A
! (𝜆9)𝐻:;<=(∞)𝑈>?@A(𝜆9)

• Use deuteron wave functions to find matching scale 𝜆9
(other matching procedures also work)

• Transformations of the harder potential (AV18) determine the 
additional 2-body operator for calculations with soft potentials

𝑂:;<=
4"B;AC 𝜆9 = 𝑈>?@A(𝜆9)𝑂>?@A

#"B;AC(∞)𝑈>?@A
! (𝜆9)

• Apply same procedure following the previous point
• Lowering 𝜆9 → 4.5 fm-1 raises soft 𝐿 to match hard 𝐿
• Moral: additional 2-body operator needed to calculate 

consistent values of 𝐿 for soft potentials; found by matching!

Average Levinger constant for several nuclei comparing 
the SMS N4LO 550 MeV and AV18 potentials. Results 
are also shown for the SMS N4LO 550 MeV potential 
with an additional two-body operator due to inverse-
SRG transformations from AV18.Matching interactions

Tropiano et al. (2022)



Summary and outlook
• At low renormalization group (RG) resolution, simple approximations to SRC 

physics work and are systematically improvable
• Results suggest that we can analyze high-energy nuclear reactions using low RG 

resolution structure (e.g., shell model) and consistently evolved operators
• Matching resolution scale between structure and reactions is crucial! (cf. quenching)
• NN interactions can be “smoothly” connected by RG transformations



• At low renormalization group (RG) resolution, simple approximations to SRC 
physics work and are systematically improvable

• Results suggest that we can analyze high-energy nuclear reactions using low RG 
resolution structure (e.g., shell model) and consistently evolved operators

• Matching resolution scale between structure and reactions is crucial! (cf. quenching)
• NN interactions can be “smoothly” connected by RG transformations

• Ongoing work:
• Extend to (𝑒, 𝑒.𝑝) knockout cross sections and test scale/scheme dependence
• Investigate impact of various corrections: 3-body terms, many-body physics, etc.
• Apply to more complicated knock-out reactions; first steps: Hisham et al., RG 

evolution of optical potentials, PRC 106 (2022)
• Benchmark against QMC calculations

Summary and outlook



Thank you!
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Extras

Fig. 16: Cartoon snapshots of a nucleus at (left) low-RG and (right) high-
RG resolutions. The back-to-back nucleons at high-RG resolution are an 
SRC pair with small center-of-mass momentum.



Extras

Fig. 17: Initial and SRG-evolved deuteron wave functions 
in coordinate space for several chiral interactions.

Fig. 18: SRG evolution for several chiral interactions in 
the 3S1-3S1 channel.

Universality: Low-energy physics 
of different interactions becomes 
the same at low RG resolution



Extras

Fig. 19: Ratio of 𝛿𝑈𝛿𝑈/(𝑘, 𝑞) for fixed 𝑘 and 𝜆.

• Consider an operator dominated by high momentum 𝑞 where 
𝑘 < 𝜆 and 𝑞 ≫ 𝜆

• Expand the eigenstates 𝜓89 of the initial NN Hamiltonian in 
terms of the SRG-evolved states 𝜓8!

𝜓89 𝑞 ≈ 𝛾! 𝑞 B
:

!
𝑑 W𝑝𝑍 𝜆 𝜓8! 𝑝 + 𝜂! 𝑞 B

:

!
𝑑 W𝑝𝑝)𝑍 𝜆 𝜓8! 𝑝 +⋯

• Substitute leading-order term of operator product expansion 
(OPE) in spectral representation of SRG transformation

𝑈! 𝑘, 𝑞 =\
8

9

𝑘 𝜓8! 𝜓89 𝑞

≈ [ \
8

;# ≪ ;$%$

𝑘 𝜓8! B
:

!
𝑑 W𝑝𝑍 𝜆 𝜓8

!# 𝑝 ] 𝛾! 𝑞

≡ 𝐾!(𝑘)𝑄!(𝑞)



Deuteron wave function (s and d) original 
(left) and evolved (right) with SRG (scale λ)

SRG evolution suppresses tensor (d-state) and 
core SRC physics, leaving observables unchanged

[see A. Tropiano et al (2020)]
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Consider a high-momentum matrix element at high resolution (i.e., with SRCs) 
between A-body wave functions, divided by the same for the deuteron. 

SRG-evolved view of inclusive SRC ratios



Consider a high-momentum matrix element at high resolution (i.e., with SRCs) 
between A-body wave functions, divided by the same for the deuteron. 

Uλ(k,k’)Uλ
†(k,k’) =  1

SRG unitary transformation
where λ is resolution scale

SRG-evolved view of inclusive SRC ratios



Consider a high-momentum matrix element at high resolution (i.e., with SRCs) 
between A-body wave functions, divided by the same for the deuteron. 

SRG unitary transformation
where λ is resolution scale =  1Uλ(k,k’)Uλ

†(k,k’)

SRG-evolved view of inclusive SRC ratios



Consider a high-momentum matrix element at high resolution (i.e., with SRCs) 
between A-body wave functions, divided by the same for the deuteron. 

SRG unitary transformation
where λ is resolution scale =  

Uλ|ψ⟩ is a soft wave function

SRG-evolved view of inclusive SRC ratios



Consider a high-momentum matrix element at high resolution (i.e., with SRCs) 
between A-body wave functions, divided by the same for the deuteron. 

SRG unitary transformation
where λ is resolution scale

Uλ|ψ⟩ is a soft wave function

SRG-evolved view of inclusive SRC ratios



Consider a high-momentum matrix element at high resolution (i.e., with SRCs) 
between A-body wave functions, divided by the same for the deuteron. 

SRG unitary transformation
where λ is resolution scale

If k < λ and k’ > λ, Uλ factorizes 
“Scale separation”

SRG-evolved view of inclusive SRC ratios



Consider a high-momentum matrix element at high resolution (i.e., with SRCs) 
between A-body wave functions, divided by the same for the deuteron. 

SRG unitary transformation
where λ is resolution scale

If k < λ and k’ > λ, Uλ factorizes This is an operator product 
expansion (OPE), cf. EFT.

High-q dependence 
is independent of A

SRG-evolved view of inclusive SRC ratios



Consider a high-momentum matrix element at high resolution (i.e., with SRCs) 
between A-body wave functions, divided by the same for the deuteron. 

SRG unitary transformation
where λ is resolution scale

If k < λ and k’ > λ, Uλ factorizes This is an operator product 
expansion (OPE), cf. EFT.

High-mom. dependence 
is independent of A

Smooth operator 
in soft wf; can 
evaluate in LDA

State-independent
and dominated by 

two-body part

This

2

GENERALIZED CONTACT FORMALISM AND
QUANTUM MONTE CARLO CALCULATIONS

The GCF is an effective model that provides a fac-
torized approximation for the short-distance (small-r)
and high-momentum (large-k) components of the nuclear
many-body wave function. Its derivation is rooted in the
scale separation between the strong relative interaction of
nucleons in SRC pairs and their weaker interaction with
the residual A� 2 nuclear system [32, 33, 48]. Using this
scale separation, the two-nucleon density in either coordi-
nate or momentum space (i.e., the probability of finding
two nucleons with separation r or relative momentum q)
can be expressed at small separation or high momentum
as [33]:

⇢NN,↵
A (r) = CNN,↵

A ⇥ |'↵
NN (r)|2,

nNN,↵
A (q) = CNN,↵

A ⇥ |'↵
NN (q)|2, (1)

where A denotes the nucleus, NN denotes the nucleon
pair being considered (pn, pp, nn), and ↵ stands for the
nucleon-pair quantum state (spin 0 or 1). CNN,↵

A are
nucleus-dependent scaling coefficients, referred to as “nu-
clear contact terms”, and '↵

NN are universal two-body
wave functions that are given by the zero-energy solution
of the two-body Schrödinger equation for the NN pair
in the state ↵. '↵

NN are universal in the sense that they
are nucleus independent, but they do strongly depend on
the NN interaction model, see Fig. 1.

While the normalizations of two-nucleon densities are
well defined by the total number of nucleons in the
nucleus, the individual normalizations of CNN,↵

A and
|'↵

NN |2 are not. We therefore choose to normalize
|'↵

NN (q)|2 such that its integral above 1.3 fm�1
(⇡ kF)

equals unity [33]. '↵
NN (r) is the Fourier transform of

'↵
NN (q). Thus, the normalization of one function auto-

matically defines the normalization of the other.
We note that an important feature of the GCF is the

equivalence between short distance and high momentum.
This is built into Eq. (1) by the use of the same contact
terms CNN,↵

A for both densities.
Previous studies of the GCF [33] showed the valid-

ity of Eq. (1) using QMC calculations of ⇢NN,↵
A (r) and

nNN,↵
A (q) for A = 2 to 40 using the AV18+UX interac-

tion. More recently, the authors of Refs. [40, 49] ana-
lyzed QMC calculations of ⇢NN

A (r) using the same four
interactions studied here (although without separating
them into different spin-isospin channels), and showed
the first evidence for scale-and-scheme independence of
⇢NN
A (r)/⇢NN

d (r) ratios for short distances.
Here we extend these previous studies using new QMC

calculations of two-nucleon distributions in both coor-
dinate and momentum space, projected into different
spin-isospin channels, for different nuclei and using differ-
ent NN+3N potentials (AV18+UX, AV4’+UIXc, N2LO
(1.0 fm) and N2LO (1.2 fm)), see Table I.
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Figure 1: Universal two-body functions |'↵
NN |2 for spin-1 pn

(top) and spin-0 pp (bottom) pairs calculated in both coor-
dinate (left) and momentum (right) space for four different
NN potentials. See text for details.

The phenomenological AV18 [42] and AV4’ [44] poten-
tials are “hard interactions”, with a significant probabil-
ity for nucleons to have high momentum (k > 3 fm�1,
see Fig. 1). Their derivation is similar with AV4’ be-
ing a reprojection of AV18 onto the first four channels
that does not include the tensor interaction. Both po-
tentials are supported by 3N forces (UX [43] and the
central component of UIX, UIXc [35], respectively), that
provide a good description of all nuclei considered in this
work [30, 35, 37].

The N2LO interactions are fundamentally different, as
they are based on a chiral perturbation expansion up
to third order with local coordinate-space regulators at
distances of 1.0 and 1.2 fm [39, 45–47]. These regula-

Table I: QMC-calculated two-nucleon distributions for differ-
ent nuclei and NN+3N potentials. Checkmarks indicate cal-
culations used in the current study. All calculations are avail-
able for both coordinate and momentum space, except for
16O and 40Ca with AV18 (labeled with an asterisk below), for
which the UIX potential is used and results are only available
in coordinate space [37]. Calculations with the N2LO (1.2 fm)
potential for heavier systems are not considered in this work
due to the large regulator artifacts found for A � 12 (see
Ref. [39]).

AZ AV18+UX AV4’+UIXc N2LO(1.0fm) N2LO(1.2fm)

d
3H
3He
4He
6Li
12C –
16O ⇤ –
40Ca ⇤ – –

This is the GCF phenomenology
derived, but generalizable and 

systematically improvable!

SRG-evolved view of inclusive SRC ratios



Consider a high-momentum matrix element at high resolution (i.e., with SRCs) 
between A-body wave functions, divided by the same for the deuteron. 

SRG unitary transformation
where λ is resolution scale

If k < λ and k’ > λ, Uλ factorizes This is an operator product 
expansion (OPE), cf. EFT.

High-mom. dependence 
is independent of A

Smooth operator 
in soft wf; can 
evaluate in LDA

State-independent
and dominated by 

two-body part
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Fig. 11. (Color online) The proton momentum distributions
in all T = 0 nuclei from A = 2–12 calculated by Wiringa et al.
using their variational Monte Carlo theory in ref. [153].

Fig. 12. (Color online) The un-normalized population of nu-
cleons in 12C up to momentum k (blue) (Courtesy of B.J. Cai,
2015) from the variational Monte Carlo prediction shown in
fig. 11.

indicate that about 25% nucleons are in the HMT in SNM,
while calculations are still model dependent. For exam-
ple, the Self-Consistent Green’s Function (SCGF) theory
using the Av18 interaction predicts a 11–13% HMT for
SNM at saturation density ρ0 [156, 157], while Bruckner-
Hartree-Fock calculations predict a HMT between about
10% using the N3LO450 to over 20% using the Av18, Paris
or Nij93 interactions [158, 159]. Thus, there is a qualita-
tive agreement but quantitative disagreement regarding
the size of the HMT even in SNM.

Significant progresses have been made in understand-
ing the source and features of the nucleon momentum dis-
tributions in finite nuclei especially from electron-nucleus
scattering experiments during the last two decades [83,
160–170], albeit there are still controversies especially
from those experiments using nuclear probes, see, e.g.,
refs. [171–175]. Theoretically, large uncertainties exist in

quantifying the shape, size and isospin dependence of
the HMT of single-nucleon momentum distributions in
neutron-rich matter, for a recent review, see, e.g., ref. [27].
While some strong and consistent indications about the
isospin dependence of the HMT have been found in elec-
tron scattering experiments [176], quantitative predictions
are still model dependent. More specifically, based on the
observation that the SRC strength of a neutron-proton
pair is about 18–20 times that of two protons, the HMT
in PNM was estimated to be about 1–2% [177]. How-
ever, some theories predict a significantly higher HMT in
PNM. For example, the SCGF predicted a 4–5% HMT
in PNM [156, 157]. More specifically, based on the lad-
der SCGF approach [157], Rios, Polls and Dickhoff have
shown clearly that the momentum distribution of neutrons
with respect to that of protons depends strongly on the
interactions used especially in neutron-rich matter. The
integrated strength defined as [157]

φ2(ki, kf ) =
1

π2ρτ

∫ kf

ki

dk k2nτ (k) (30)

can be used to quantify the population in the momentum
range between ki and kf . Shown in fig. 13 are the values
of φ2(ki, kf ) in the three windows of momentum. As dis-
cussed in [157], the low-momentum region, from ki = 0
to kf = 400MeV, includes depletion effects as well as the
shifts in the Fermi momenta, the middle panels represent
approximately the tensor-dominated region while the bot-
tom panels illustrate the remaining strength in the very
high-momentum region above 850MeV where three-body
short-range correlations may play a significant role.

It is seen from fig. 13 clearly that as the isospin-
asymmetry increases, higher fractions of protons popu-
late the HMT while in the low-momentum region neutrons
dominate. Most importantly, the integrated strength espe-
cially at high momentum is very interaction dependent. In
particular, either turning off the tensor or high-momentum
component of the interaction leads to significant reduc-
tions of the HMT. The relative populations of the HMT
is also strongly interaction dependent. Moreover, within
the SCGF approach it was also shown that the shape of
the HMT is also model dependent. The HMT does not
always scale as 1/k4 as predicted in some other models
discussed in detail in ref. [27]. Nevertheless, the SCGF
and all other models qualitatively confirm the deuteron-
like neutron-proton dominance picture illustrated in fig. 14
for the creation of the HMT. In neutron-rich systems, neu-
trons are in the majority. The minority protons have a rel-
atively larger chance of finding a neutron partner to form
a T = 0 pair for the tensor force to be active. Within
the neutron-proton dominance approximation, there are
equal number of neutrons and protons in the HMT. Thus,
a larger fraction of protons is in the HMT. An inter-
esting example from data mining of electron-nucleus and
proton-nucleus scattering experiments [176, 178] is shown
in fig. 15. The measured fraction of high-momentum pro-
tons relative to that of 12C is shown as a function of the
isospin-asymmetry (N −Z)/A. It is seen clearly that from
neutron-poor to neutron-rich systems the relative proton

Wiringa et al., PRC (2014)

Universal
high-k tails

SRG-evolved view of inclusive SRC ratios



Consider a high-momentum matrix element at high resolution (i.e., with SRCs) 
between A-body wave functions, divided by the same for the deuteron. 

Bottom line: to leading approximation in the OPE, ratios of high-
momentum matrix elements are determined by soft (“mean field”) 

physics and independent of the high momentum.

Anderson et al., 
PRC (2010); 

Bogner/Roscher, 
PRC (2012);
Chen et al., 
PRL (2017);
Lynn et al.,

JPhysG (2020)
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Ref. [35] showed that the relative abundance of short-
distance NN pairs in nucleus A relative to deuterium
(i.e., ⇢A(r)/⇢d(r) for r ! 0, where ⇢A(r) includes all
NN pairs) is insensitive to the nuclear interaction, and
is numerically consistent with the experimental values
of a2(A/d) for all nuclei considered. This raised doubts
about the sensitivity of a2(A/d) measurements to the
NN+3N interaction. However, the assumed connection
between the a2(A/d) data analyzed in momentum space
and the calculated pair-distance distributions needed to
be justified.

We bolster and extend these observations by showing
that the calculated contact ratios are independent of the
NN+3N interaction in both coordinate and momentum
space and for each pair quantum state separately. This is
consistent with previous calculations that found the rela-
tive abundance of SRC pairs to be a mean-field property
of the nuclear medium, with only their specific proper-
ties (isospin structure, relative momentum distribution,
etc.) being determined by the short distance part of the
NN interaction [56–60]. Thus our results raise even more
doubts about the connection between the a2(A/d) mea-
surements and the NN+3N interaction.

An alternate method for probing SRCs is by measuring
exclusive two-nucleon knockout reactions A(e, e0NN) [1,
3–10]. Fig. 5 shows the ratio of pp to pn pairs in 4

He, as
a function of the pair relative momenta, extracted from

 ra
tio

s
s=

1
pnC

1
2
3
4
5  

 
A / d

pn, s=1

AV18+UX (r-, k-space)
 (r-, k-space)cAV4'+UIX

LO(1.0fm) (r-, k-space)2N
LO(1.2fm) (r-, k-space)2N

 ra
tio

s
s=

1
pnC 0.5

1

1.5
He4A / 

pn, s=1

 ra
tio

s
s=

0
ppC 1

2

3

He4H3 He3 Li6 C12 O16 Ca40

He4A / 

pp, s=0

Figure 4: Ratios of spin-1 pn contact terms for different nu-
clei to deuterium (top) or 4He (middle), and of spin-0 pp con-
tact terms for different nuclei to 4He (bottom). The contact
terms ratios were extracted using different NN+3N poten-
tials in both coordinate (squares) and momentum (circles)
space. The contact values for 3H in the spin-0 pp panel corre-
sponds to Cs=0

nn , as there are no pp pairs in this nucleus. See
text for details.
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Figure 5: Ratio of pp-to-pn back-to-back pairs in 4He
as a function of pair relative momentum q, npp

A (q,Q =
0)/npn

A (q,Q = 0), for different NN+3N potentials, compared
with the experimental extractions of Ref. [7] using (e, e0pp)
and (e, e0pn) data. See text for details.

(e, e0pp) and (e, e0pn) data [7]. The data are compared
with two-nucleon distribution ratios npp

4He
(q)/npn

4He
(q) cal-

culated at zero c.m. pair momentum (Q = 0) using differ-
ent interaction models. Requiring low or zero c.m. mo-
mentum (back-to-back pairs) reduces contributions from
uncorrelated pairs [33], allowing to meaningfully compare
SRC calculations and measurements. The pp to pn ratio
calculated with the AV4’+UIXc interaction is inconsis-
tent with the other calculations and with the experimen-
tal data, due to its lack of a tensor force. Thus, exclusive
observables can be sensitive to short-distance properties
of the nuclear interaction.

Lastly, Refs. [61, 62] claimed there exists a difference
between the scaling of SRC pairs with small separation
and high relative momenta, and that of pairs with small
separation but any relative momenta. The fact that both
coordinate- and momentum-space contacts exhibit the
same scaling shows that these speculations are inconsis-
tent with QMC wave functions [63].

ABSOLUTE CONTACTS

Having observed that the ratio of contact terms for
heavier to light nuclei is both scale and scheme inde-
pendent, and is the same for both small-separation and
high-momentum pairs, we now examine the individual
contacts.

Fig. 6 (top panel) shows the contacts extracted by fit-
ting Eq. (1) to the individual two-nucleon QMC densi-
ties for different nuclei in either coordinate or momentum
space. In contrast to the contact ratios, here the univer-
sal functions do not cancel, so we fixed the normalization
of |'↵

NN (q)|2 so that its integral above 1.3 fm�1
(⇡ kF)

equals one. This defines the normalization of |'↵
NN (r)|2

via a Fourier transform, leaving CNN,↵
A as the only free

Interaction independent
contact ratios (as in GCF)

SRG-evolved view of inclusive SRC ratios



Consider a ratio of high-momentum matrix elements at high resolution 
(i.e., with SRCs) allowing both different A and different operators. 

SRG unitary transformation
where λ is resolution scale

If k < λ and k’ > λ, Uλ factorizes 

No dependence
on operator

so independent
in ratio

State-independent
ratio of operators

Op. 1

Op. 2

Correlation Probability: 
Neutrons saturate Protons grow

Duer Nature (2018)

Consider pair
distributions 
for protons 

and neutrons

SRG-evolved view of inclusive SRC ratios


