SRC and nPDF Universality

Or Hen

4th International Workshop on Quantitative Challenges in SRC & EMC Effect Research, CEA France, Feb. 3rd (2023)

Short-Range Correlations Across Scales

Quarks in SRCs and Nuclei

How does QCD dynamics affect the identity of nucleons in nuclei?

Quark Momentum Suppression in Nuclei (EMC Effect)

Aubert et al., PLB (<u>1983</u>); Ashman et al., PLB (1988); Arneodo et al., PLB (1988); Allasia et al., PLB (1990); Gomez et al., PRD (1994); Seely et al., PRL (2009); Schmookler et al., Nature (<u>2019</u>)

Quark Momentum Suppression

38 years, > 1000 publications, no consensus. **Effect driven by nuclear structure & dynamics**

Aubert et al., PLB (1983); Ashman et al., PLB (1988); Arneodo et al., PLB (1988); Allasia et al., PLB (1990); Gomez et al., PRD (1994); Seely et al., PRL (2009); Schmookler et al., Nature (2019) 3

SRC Picture of Nuclei

Nucleon Momentum

EMC – SRC Correlation

Nature (2019); RMP (2017); IJMPE (2013); PRC (2012); PRL (2011); ...

SRC Fraction (A/d)

SRC Universality!

Schmookler et al., Nature (2019); Segarra et al., Phys. Rev. Lett. (2020); Segarra and Pybus et al., Phys. Rev. Research (2021)

Verified Predictions!

MARATHON Data: Abrams et al., Phys. Rev. Lett. (2022) Our Prediction: Segarra et al., Phys. Rev. Lett. (2020)

<u>Next Step:</u> Nuclear Quark-Gluon Distributions From Global Analysis

Introduction to nPFDs

(1) Data

$$xf_i^{p/A}(x, Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5},$$

$$c_k \to c_k(A) \equiv p_k + a_k (1-A^{-b_k})$$

Corrections...

$$\begin{split} F_{2}^{\text{TMC}}(x,Q) &= \frac{x^{2}}{\xi^{2}r^{3}}F_{2}^{(0)}(\xi,Q) + \dots \\ \frac{F_{2}^{A,\text{TMC}}(x,Q)}{F_{2}^{D,\text{TMC}}(x,Q)} &\simeq \frac{F_{2}^{A,\text{leading}},(x,Q)}{F_{2}^{D,\text{TMC}},(x,Q)} = \frac{F_{2}^{A,(0)}(\xi,Q)}{F_{2}^{D,(0)}(\xi,Q)} \\ F_{2}^{A}(x,Q) &\to F_{2}^{A}(x,Q) \left[1 + \frac{C_{\text{HT}}(x,A)}{Q^{2}}\right] \\ C_{\text{HT}}(x,A) &= h_{0}x^{h_{1}}(1 + h_{2}x)A^{\tau}, \quad \frac{F_{2}^{A}}{F_{2}^{p}} \equiv \frac{F_{2}^{A}}{F_{2}^{p}} \cdot \left(\frac{F_{2}^{A}}{F_{2}^{p}}\right) \\ \end{split}$$

 $\left(\frac{F_2^D}{F_2^p}\right)$

Introduction to nPFDs

(3) Fit

Utilizing PRD 103, 114015 (2021)

NEW

Introduction to nPFDs

(4) Extract Flavor-Dependent Distributions

Utilizing PRD 103, 114015 (2021)

NEW

Nuclear Quark-Gluon Distributions From Global Analysis

$q_i^A(x,Q^2) = \left(1 - \mathcal{M}_{SRC}^A\right) \times f_i^{free}(x,Q^2) +$ $\mathcal{M}_{SRC}^A \times f_i^{SRC}(x,Q^2)$

Nuclear Quark-Gluon Distributions From Global Analysis

 $q_i^A(x,Q^2) = (1 - \%^A_{SRC}) \times f_i^{free}(x,Q^2) + \\ \%^A_{SRC} \times f_i^{SRC}(x,Q^2)$

Nuclear dependence comes in via a single, flavor independent, parameter: %SRC

Nuclear Quark-Gluon Distributions From Global Analysis

 $q_i^A(x,Q^2) = \left(1 - \mathcal{M}_{SRC}^A\right) \times f_i^{free}(x,Q^2) +$ $\mathcal{M}_{SRC}^A \times f_i^{SRC}(x,Q^2)$

Nuclear dependence comes in via a single, flavor independent, parameter: %SRC

> Reminder: traditionally nuclear dependence is a complex parametrization: Utilizing PRD 103, 114015 $c_k \rightarrow c_k(A) \equiv p_k + a_k(1 - A^{-b_k})$

✓ Describes Data Well

Nuclear DIS (EMC + Shadowing)

✓ Describes Data Well

Nuclear DIS (EMC + Shadowing)

✓ Describes Data Well

Correctly Predict SRC Abundances

Correctly Predict SRC Abundances

First (?) prediction of a nuclear structure property, i.e. SRC abundance, from purely partonic observables!

+ Enhanced Valance SRC Modification

Nuclear Interaction *Universally* Impacts Quark-Gluon Distributions

A.W. Denniston,^{1,*} T. Ježo ⁽¹⁾,^{2,†} A. Kusina ⁽¹⁾,³ P. Duwentäster ⁽¹⁾,^{2,4,5} O. Hen ⁽¹⁾,¹
C. Keppel ⁽¹⁾,⁶ M. Klasen ⁽¹⁾,^{2,7} K. Kovařík ⁽¹⁾,² J.G. Morfín ⁽¹⁾,⁸ K.F. Muzakka ⁽¹⁾,^{2,9}
F.I. Olness ⁽¹⁾,^{10,‡} P. Risse ⁽¹⁾,² R. Ruiz ⁽¹⁾,³ I. Schienbein ⁽¹⁾,¹¹ and J.Y. Yu. ⁽¹⁾,¹¹

*nCTEQ Collaborators

Thank you!

Exciting Times Ahead!