Update on the Montreal X-17 Project

G. Azuelos^{1,2}, B. Broerman³, D. Bryman^{2,4}, W.C. Chen¹, H.N. da Luz⁵, L. Doria⁶, A. Gupta¹, L-A. Hamel¹, M. Laurin¹, K. Leach⁷, G. Lefebvre¹, J-P. Martin¹, F. Nadeau¹, A. Robinson¹, N. Starinski¹, R. Sykora⁵, D. Tiwari⁸, U. Wichoski^{9,10,11}, V. Zacek¹

- ¹ Université de Montréal, Canada
 ² TRIUMF, Canada
 ³ Queen's University, Canada
 ⁴ University of British Columbia, Canada
 ⁵ Czech Technical University, Czech Republic
 ⁶ Johannes Gutenberg University of Mainz, Germany
- ⁷ Colorado School of Mines, USA
 ⁸ University of Regina, Canada
 ⁹ Laurentian University, Canada
 ¹⁰ SNOLAB, Canada
 ¹¹ Carleton University, Canada

Outline:

- Introduction:
 - Brief reminder of motivation for the search
- Basic experimental setup
 - scintillator ring
 - MWPC
 - target
- Tests and Simulations

Internal Pair Creation in ⁸Be

figures borrowed from: Feng et al., Phys. Rev. D 95, 035017 (2017), arXiv:1608.03591

ATOMKI result on ⁸Be, 2016

For a transition energy of 18.15 MeV an opening angle of 140° betweeen e⁺ and e⁻ corresponds to a mass of 16.7 MeV

from: Krasznahorkay AJ, et al., Phys Rev Lett 2016;116(4); <u>arXiv:1504.01527</u>

S/B appear to be ~ 0.7 ?

now BR = 3.4-5.8E-06,

ATOMKI result on ⁴He

Krasznahorkay AJ et al., arXiv:1910.10459

Krasznahorkay AJ et al, *Phys.Rev.C* 104 (2021) 4, 044003, <u>arXiv:2104.10075</u>

TABLE I. Internal Pair Creation Coefficients (IPCC), X17 Boson branching ratios (Bx), masses of the X17 particle, and confidences derived from the fits.

E_p	IPCC	\mathbf{B}_x	Mass	Confidence
(keV)	$\times 10^{-4}$	$\times 10^{-6}$	(MeV/c^2)	
510	2.5(3)	6.2(7)	17.01(12)	7.3σ
610	1.0(7)	4.1(6)	16.88(16)	6.6σ
900	1.1(11)	6.5(20)	16.68(30)	8.9σ
Averages		5.1(13)	16.94(12)	
⁸ Be values		6	16.70(35)	

Theoretical speculations/calculations...

Scalar (0^+) ? Pseudoscalar (0^-) ?, Vector (1^-) ? Axial-vector (1^+) ?

- ★ J.L. Feng et al. Phys. Rev. Lett. 117, 071803 (2016); Phys. Rev. D 95, 035017 (2017), Phys.Rev. D 102, 036016 (2020)
 - favor vector gauge boson (not dark photon) coupling not proportional to electric charge
 - \odot protophobic, from constraints from $\pi^0 \longrightarrow Z\gamma$ results of NA48/2 experiment
- * Ellwanger and Moretti JHEP 11 39 (2016)
 - $\odot~$ possible pseudoscalar $J^{\pi}=0^{-}$
- * X. Zhang and G. Miller Phys. Lett. B773 159 (2017)
 - \odot improved nuclear model
 - \odot nuclear form factor does not explain anomaly
- * Kozaczuk et al., Phys.Rev.D 95 (2017) 11, 115024
 - $\odot~$ axial-vector X17 explains isoscalar transition (18.15 MeV) and absence of isovector (17.64 MeV)
- * Luigi Delle Rose et al. Phys. Rev. D 96, 115024 (2017); Phys. Rev. D 99 055022 (2019); Frontiers in Physics 7 73 (2019)
 - \odot consider pseudoscalar 0^- or axial-vector Z'
 - $\circ~$ possibly embedded in BSM models
- * J.L. Feng, T.M.P. Tait and C.B. Verharen, Phys. Rev.D 102, 036016 (2020)
 - \odot protophobic model consistent with ⁴He result
 - \odot consider also ¹²C
- * X. Zhang and G. A. Miller, Phys. Lett. B 813 (2021), 136061
 - \odot protophobic hypothesis: X17 capture dominated by E1 direct capture without going through any nuclear resonance
 - \odot smooth energy dependence that occurs for all proton beam energies above threshold.
- * M. Viviani et al. Phys. Rev. C 105, 014001 (2022)
 - **χ**EFT
 - systematic study of the cross section as function of both the opening angle and electron energy to discriminate among the different hypotheses regarding the nature of X17.

N _* .	$J^{P_*}_*$	Scalar X	Pseudoscalar X	Vector X	Axial Vector X
$^{8}\text{Be}(18.15)$	1^{+}		${\cal O}_{4P}^{(0)} \; (27)$	$\mathcal{O}_{5P}^{(1)}$ (37)	$\mathcal{O}_{3S}^{(1)}$ (29), $\mathcal{O}_{5D}^{(1)}$ (34)
$^{12}C(17.23)$	1-	${\cal O}_{4P}^{(0)} \; ({f 27})$		$\mathcal{O}_{3S}^{(1)}$ (29), $\mathcal{O}_{5D}^{(1)}$ (34)	${\cal O}_{5P}^{(1)} \ (37)$
4 He(21.01)	0-	_	${\cal O}_{3S}^{(0)} \; ({f 39})$		$\mathcal{O}_{4P}^{(1)}\left(40 ight)$
4 He(20.21)	0^+	$\mathcal{O}_{3S}^{(0)}$ (39)		${\cal O}_{4P}^{(1)} \ (40)$	

 $\epsilon_u \sim -0.5 \times \epsilon_d = 3.7 \times 10^{-3}$

TRIUMF ARIEL Workshop, May 2023

ATOMKI result on ¹²C

TABLE I. X17 branching ratios (B_x) , masses, and confidences derived from the fits.

\mathbf{E}_p	\mathbf{B}_x	Mass	Confidence
(MeV)	$\times 10^{-6}$	(MeV/c^2)	\wedge
1.5	2.7(2)	16.62(10)	8σ
1.7	3.3(3)	16.75(10)	10σ
1.88	4.1(4)	16.94(10)	11σ
2.1	4.7(9)	17.12(10)	6σ
Averages	3.4(3)	16.86(17)	\bigcirc
Previous [1]	5.8	16.70(30)	
Previous [21]	5.1	16.94(12)	
Predicted [16]	3.0		

Krasznahorkay AJ, *et al.,* Phys.Rev.C 106 (2022) 6, L061601, <u>arXiv:2209.10795</u>

FIG. 3. Angular correlations of the e^+e^- pairs for the "Signal" region. Symbols with error bars indicate experimental data measured in the ⁷Li $(p, \gamma)^8$ Be reaction at different proton beam energies.

TABLE I. The fitted mass [m(X17)] and the integrated yields I(X17), I(E1) and I(M1) of the X17 and the E1 and the M1 contributions. The ratio of I(X17)/I(E1) is also listed [B(X17)].

E_p	m(X17)	I(X17)	I(E1)	I(M1)	B(X17)
(keV)	$({\rm MeV/c^2})$				
450	16.6(3)	43(49)	30(25)	79(2)	1.4(16)
650	16.94(14)	24(16)	46(5)	32(4)	0.5(3)
800	16.81(9)	33(10)	62(4)	5.9(4)	0.53(14)
1100	17.11(12)	28(8)	66(2)	15(1)	0.41(13)

N.J. Sas et al., arXiv:2205.07744

X17 produced at all energies above 17.6 MeV resonance

- contradicts previous measurement
- explained as
 - better background fit
 - proton beam energy loss in thick target, causing increased background

Dark photon constraints

FIG. 6. The ⁸Be signal region, along with current constraints (gray) and projected sensitivities of future experiments in the (m_X, ε_e) plane. Updated from Ref. [7]. Note $Br(X \to e^+e^-) = 1$ is assumed.

The Montreal Facility

UdeM 6 MV Tandem Van de Graaff 2 μA proton beam on target (possibly up to 20 μA)

٠

• E - resolution of 2 keV for $E_p = 0.4 - 1 \text{ MeV}$

The Montreal X-17 Project

- Use parts of the DAPHNE experiment (Saclay/Mainz)
 - Many thanks to L. Doria & U. Mainz!
- Tracking MWPC chamber & 16 scintillators (NE102A)
- Scints & MWPC from U. Mainz → now @ Montreal
- Phototubes and some ADC/TDC's borrowed from TRIUMF

Daphne experiment: polarized gamma rays on polarized nuclei

Scintillators

- all scintillator bars instrumented
- pmt gains approximately adjusted
 - will be fine-tuned offline by software

Scintillators

Example of scintillator signals from localized hits

(4-fold coincidences from Cosmic Rays)

• determine attenuation length:

$$e^{-\mu x}$$
, $\mu = 0.1 - 0.2 \ m^{-1}$

- $\Rightarrow \sim 80\% \ {\rm signal}$ over length of sc. bar
- consistent with DAPHNE measurement $(0.17 \text{ m}^{-1})^*$
 - * Oliver Jahn, dissertation, Mainz 2005

• adjust gains

TRIUMF ARIEL Workshop, May 2023

scintillator signals: position resolution

- * Position resolution along scintillator bars
 - $\odot\,$ useful to resolve hit ambiguities
 - $\odot\,$ estimated from
 - $\circ~$ time difference of upstream and downstream pmt's
 - approximately 8 ns for 1 m => ~ 10-15 cm for 1 ns timing resolution
 - $\circ~$ amplitude difference

The DAPHNE Tracking Chamber

- * Inner wire chamber only
 - $\odot~{\rm ID}~12~{\rm cm}$ / OD $~14~{\rm cm}$ Length 36 cm
 - Cathode-anode distance: 4 mm;
 - 192 Anode wires:
 - \circ 20 µm diam;
 - $\circ~$ radius 6.4 cm
 - \circ spacing: 2mm (1.9°)
 - \odot 60/68 cathode strips
 - $\circ~$ radius: 6.0 and 6.8 cm
 - \circ at 45° wrt wires;
 - width 4mm, 0.5 mm separationLow density material to avoid EPC!
- * Gas mixture:
 - 74% Ar, 26% CO_2
- * Angular res.: $\Delta \theta \sim 2^{\circ}$ (FWHM)

Figure 2.11. MWPC: Reconstruction of the impact point of a traversing particle.

Dissertation, Oliver Jahn, Mainz (2005)

Preamplifiers – designed by J-P Martin

- 32 channels per card
- Nominal gain: 1V / picocoulomb (no load)
- Charge decay RC : 10 µs. (neglecting coupling RC)
- Series output impedance: 27 ohms
- Series coupling capacitance: 100 nF
- Output: twisted pair ribbon
 - 1 side grounded
 - 100 Ω termination at load
- Intended DAQ device:
 - VF48 Module
- Differential input, 100 Ω
 Power: 5V, 0.3A (total)

Here, preamps are connected on top and bottom and the chamber is triggered by CR's from scintillators above and below 31/05/23

With 50 mV tail pulse (500 fC Nominal)

Signal Processing

- ${\sc *}$ Done with Digital Signal Processing firmware in VF48
 - \odot VF48 modules designed by J-P Martin
 - 16-tap Finite Impulse Response (FIR) digital filter; 'triangular unipolar response' to a step function
 - \odot frequency: 50 MHz
 - Continuous moving window :
 - $\circ~$ Sum of samples n to n-7
 - $\circ~$ Minus sum of samples n-8 to n-15 ~
 - $\circ\,$ Result divided by 4
 - \circ Max/min of values is calculated in the window aperture => Charge evaluator.
- * NOTE: the same algorithm is applied also to the very short PMT anode signals
 - \odot This produces bipolar output signals
 - \odot The charge is evaluated for both polarit
 - \odot (Q+ minus Q-)/2 is the variable kept in the data packets

- * Wire chamber: wire signals
 - \odot trigger from cosmic rays through scintillators

Correlations, mostly between adjacent wires

as planned 1 1/2 year ago

Elements of the DAQ system

Backend

16-port Back-end interface card (16X RJ45 to FMC) shown on a test bench

Store hit pattern of wires and strips if

- scintillator trigger (at least 2 scints. and > 4 MeV sum)
- at least 2 wire clusters
- at least 2 strip clusters

Xilinx development board to be used for the backend (ZCU104)

- Can handle the 16 ports and clocks of the interface card
- FNC low density connector
- Ultrascale FPGA with 6 software processors
- Local SD disk (SATA)
- Pentalinux
- Ethernet and USB ports

Target holder

- * 1" long, 2" OD copper heat exchanger, water cooled
- * Cu brazed (Ag) heat pipe support
- * 4 mm x 150 mm heat pipe
 - \odot Rated 20W @ effective length
 - \circ 1 uA proton @ 1 MeV = 1W
 - $\circ~$ Goal 20 uA beam -> 20W max of heat
- * Substrate 1/4" x 1,25" x 0,001" thick, 1/4" diameter LiF target
- Brass screw to hold target and ease target replacement
- * High temperature plastic support to hold target flat
- * Tantalum beam stop disc

Beam test

Yesterday:

- 1.04 MeV beam bombarding LiF target
- all 16 scintillators irradiated with ${}^{8}\text{Be}^{*} \gamma$'s and 6.1 MeV γ 's from ${}^{19}\text{F}(p,\alpha\gamma){}^{16}\text{O}$
- 6 MeV peak at channel ~ 200
- muons from CR's (17 MeV) at ch ~ 600

COMSOL simulations

- ✤ Heat transfer module
 - No radiation
 - No outside air natural convection

✤ Heat pipe

- Effective thermal conductivity
 o 24 000 W/(m*K)
- * Water cooling to 10° C
- ★ Target temp below 70° C
 - $\odot~20$ W heat at target from 20 uA beam (Li melts at 180°C)
- * preliminary tests of heat
 - $\odot\,$ measured overheating
 - $\odot\,$ needs to be revised

Target orientation

Test set-up

Planning initial run with 2 sectors of 60 degrees

- cover angular range 0° - 60° and 120° - 180°
- test full chain measurement and DAQ
- first tests and calibrations with 6.15 MeV photons from ${}^{19}F(p,\alpha\gamma){}^{16}O$
- measure rates

Monte Carlo simulation with Geant4

Geometrical Acceptance

Angular dependence

FIG. 6. The four-fold differential cross section for the ${}^{3}\text{H}(p, e^{-}e^{+}){}^{4}\text{He}$ process at 0.90 MeV incident proton energy for the configuration in which the e^{+} and e^{-} momenta are emitted at angles $\theta = \theta'$ with respect to the incident proton momentum, and as function of the difference $\Delta \phi = \phi' - \phi$.

M. Viviani et al. Phys. Rev. C 105, 014001 (2022)

Monte Carlo simulation with Geant4 Assumed parameters

* MWPC

 \odot angular resolution: 2°

* Scintillator bars:

• energy resolution ~ 7 %/ $\sqrt{E(MeV)}$

⊙ position resolution: ~ 10 cms FWHM in z direction from energy sharing and time difference at the two ends

Calibration/resolution of scintillators ongoing
scintillator bars tested for light output and light attenuation length
phototubes tested with LED's for gain and stability

Geant4 Simulation, reconstruction

3 basic observables for e^+e^- pair

- opening angle
 - heavy particle → small boost

→ large

opening angle

- asymmetry: $y \equiv \frac{|E_1 E_2|}{E_1 + E_2}$
 - for low m_{ee}, large opening angles correlated with large asymmetry.
- invariant mass m_{ee}
 - preselection of large m_{ee} removes a lot of background and fake signals

Simulation – 8Be* (IPC & X17)

- * Reconstructed opening angle
 - \odot asymmetry < 0.5
 - $\odot \ m(e^+e^-) > 12 \ MeV$
 - assumes $\frac{B(X \rightarrow e^+e^-)}{B(^8Be^* \rightarrow \gamma)} = 5.8 \ge 10-6$

or
$$\frac{B(X \to e^+e^-)}{B(^8Be^* \to e^+e^-)} = 1.5 \ge 10^{-3}$$

- * strong dependence on E1/M1 ratio
 - $\odot~$ due to higher IPC coefficient for E1 than for M1 at high θ
 - $\circ~$ assuming same X/ γ BR implies higher background at high θ for E1 transition
 - $\circ~$ but in region of interest, experimentally: S/B $\sim~0.7$

TRIUMF ARIEL Workshop, May 2023

Rough spectrum of gamma rays

Reconstructed opening angle of e^+e^- , from EPC, requiring $E_{e^+e^-} > 12 \text{ MeV}$ for 10^6 photons above 6.1 MeV generated \rightarrow very few events in region of interest

→ unknown rate of photons ...

Signal rates

Consistent with ATOMKI's measurement: (5µA for 50 hrs) - N.J. Sas et al., <u>arXiv:2205.07744</u>

TRIUMF ARIEL Workshop, May 2023

Conclusions

- * X17 experiment setup progressing
 - $\odot~$ Scintillator bars instrumented and mounted
 - $\circ~$ tested with cosmic rays
 - $\circ~$ gains adjusted and calibration approximately measured
 - $\circ~$ good signals
 - MWPC
 - $\circ~$ large solid angle gives uniform angular response
 - helps in determination of nature of X17
 - $\circ~$ prototype preamplifiers fully tested
 - signals in wires and strips
 - ready for production
 - $\circ~$ good progress in DAQ system
 - Simulations
 - $\circ~$ Geant4 simulation of boson, IPC, cosmic rays
 - $\circ~$ EPC simulation needs beam test results of gamma ray spectrum and rates
- * prospects
 - Eventually extend to other states & nuclei: ${}^{10}B(17.8, 19.3), {}^{4}He (22 \text{ MeV}), {}^{12}C(17.2)$
 - Giant Resonance? (bombard at 4-5 MeV, but high neutron flux)

Figure 2 – The 90% confidence level exclusion contour in the dark photon model parameter space. Regions excluded by previous experiments are shown in $grey^{12}$. The red line shows the region of parameter space which yields the correct dark matter relic density, with the assumptions discussed in the main text.

arXiv:2305.08665

Krasznahorkay AJ et al,

Figure 1: The most relevant 8Be states and their spin-parities J^{π} , isospins T, excitation energies Ex, and decay widths Γ from Ref. [23]. Decays of the ⁸Be 18.15 MeV state to the ground state of ⁸Be exhibit anomalous internal pair creation.

TRIUMF ARIEL Workshop, May 2023

FIG. 1. a) Detector response for the setup as a function of correlation angle (θ) for isotropic emission of e^+e^- pairs (red crosses) compared with the results of the Monte Carlo simulations (black line histogram) as explained in the text. b) e^+e^- angular correlations obtained for the 17.6 MeV transition of ⁸Be by using thin target backing compared to the simulations performed for E1 and M1 IPC, as well as for the EPC created by the γ -rays on the different materials around the target.

Krasznahorkay AJ, *et al.,* Phys.Rev.C 106 (2022) 6, L061601, <u>arXiv:2209.10795</u>

