Finalizing Spectrometer Orientations Story, Julia (Azzi), Kate

Roadmap:

- 1. Efforts to validate Jan's TDR event rates revealed an ambiguity in the Mainz Generator source code ("pre-swap" v. "post-swap")
- 2. Without GEM or E-linac constraints, sensitivity-angle distributions are found to change significantly depending on "pre-swap" v. "post-swap" builds
- 3. Constraints on E-linac (300 μ A \leq I \leq 330 μ A) & electron background (e- \leq 5 MHz) in our GEMs mitigate effect of "swap" on peak sensitivity orientation
- 4. Peak-sensitivity orientations vary depending on beam energy but generally achieve sensitivities between 2.1 and 3.1.

Mainz Generator "Pre-Swap" v. "Post-Swap"

It is unclear which generated particle (electron v. positron) defines the reference frame used to compute QED cross sections:

"Pre-Swap" ←→ original code in src/IntegrateQED.cc

double thetaD	= e2out.l	orentz(-q_out).rot	ate(q_out).theta();					
double phiD	= e2out.l	orentz(-q_out).rot	ate(q_out).phi();					
// 0 for muon	– not cur	rrently being chang	ed					
double weight	= QEDBack	<pre>kground(e_in,e_out,</pre>	<pre>q_out,m,thetaD,phiD,</pre>	0, ((<pre>(struct args*)input)->trident,</pre>	((struct	args*)input)->asymm)*Solida	angle;

"Post-Swap" $\leftarrow \rightarrow$ modified code in src/IntegrateQED.cc

<pre>double thetaD =</pre>	= e1out.l	orentz(-q_out).rotate(q_out).theta();
double phiD :	= e1out.l	orentz(-q_out).rotate(q_out).phi();
// 0 for muon ·	- not cui	rrently being changed
double weight :	= QEDBack	<pre>kground(e_in,e_out,q_out,m,thetaD,phiD, 0, ((struct args*)input)->trident, ((struct args*)input)->asymm)*Solidangle;</pre>

Initial Pre/Post-Swap Sensitivity Differences:

Config: 13@31; I = 150µA

Note: sensitivity scale is different in each plot

Peak Sensitivity ≅ 3.3

Machine Constraints:

- E-linac stability bounds current between 300µA and 330µA
- GEMs assumed to require electron event rate to be less than 5 MHz **

Constraints imply the electron spectrometer must be approximately \geq 36(7) degrees away from the beamline

Constrained Pre/Post-Swap Sensitivities:

After machine constraints, orientations converge with roughly equal peak sensitivities

Config: 13@31; I = max. allowed

Sensitivity Comparisons at Different Beam Energies

Limitations at higher beam energies

• Electron spectrometer orientation (pre-swap and post-swap) at higher energies is too close (< 36°) to the beamline:

• If the GEMs can't handle more than 5 MHz, the detectors can't be positioned close enough to the beam to detect anything...

To Do:

- Confirm machine constraints
- Simulations still need to model multiple scattering events inside GEMs
- Compare peak-sensitivity orientations at different beam energies provided machine constraints

Pre-swap (top) v. post-swap (bottom): (13@30)

