

Report of the Scientific **Program Committee**

Tanmoy Bhattacharya Los Alamos National Laboratory

USQCD All hands meeting, MIT, 4/20-21, 2023

Scientific Program Committee

- Tanmoy Bhattacharya (LANL) <u>tanmoy@lanl.gov</u> (Chair)
- Martha Constantinou (Temple) <u>marthac@temple.edu</u>
- George Fleming (FNAL) <u>george.fleming@yale.edu</u>
- Meifeng Lin (BNL) <u>mlin@bnl.gov</u>
- Sergey Syritsyn (SUNY) <u>sergei.syritsyn@stonybrook.edu</u>
 Incoming:
- Peter Petreczky (BNL) <u>petreczk@bnl.gov</u> (Deputy Chair)
- James Simone (FNAL) <u>simone@fnal.gov</u>

Outgoing:

- Alexei Bazavov (Michigan State) <u>bazavov@msu.edu</u>
- Jack Laiho (Syracuse) jwlaiho@syr.edu

USQCD Resource changes for 2023–4

BNL computational resources retiring this FY:

Used to be annual 60 M Sky-core-hours for Type A.

Available only for the first quarter of allocation (Jul-Sep '23).

New acquisition in outer years.

FNAL new GPU cluster in the new FY:

Provides annual 170 M Sky-core-hours for Type A

Available for the last three quarters of allocation (Oct '23–Jun '24).

Some friendly use in the first quarter.

New JLab resources expected in early '24.

USQCD Computational Resources for 2023–4

Computational resources for Type A:

- 59M Skylake core-hours (4M BNL, 55M FNAL)
- 170M KNL core-hours (4M BNL,166M JLab)
- 0.5M A100 gpu-hours (FNAL)
- 0.3M K80 gpu-hours (BNL)
- 1.66M RTX2080 gpu-hours (JLab)
- 0.41M MI100 gpu-hours (Jlab)

BNL resources must be used this FY, JLAB GPU resources available next FY.

2022–3 USQCD CfP

- Allocations to be announced 31st May 2022
- Significant points:
 - Continued with google forms interface → google sheets.
 - Maintained "shortened" option for continuation proposals.
 - Junior investigators called out to apply
 - Proposal review criteria unchanged
- Long-term storage requirements unchanged:
 - Intended to stay through migration to new media
 - In the same CfP and with the same timeline as the computing call
 - Initial proposal needs detailed justification of value to USQCD
 - Need renewal every year with short statements

Proposals for 2023–4

- 26 Class-A Proposals
 - 26 in 2022–23, 30 in 2021–22, 30 in 2020–21, 31 in 2019–20
 - 24 continuation proposals, 2 new ones
 - More proposals on time this year (none seriously late)
- 2 Class-B Proposal in 2022–3 (Suggested maximum resources: 500K Skylake core-hours for computation and 6-month duration).
 - 5 in 2021-22, 5 in 2020–21, 1 in 2019–20, 3 in 2018–19
- Class C (suggested maximum resources: 20K Skylake core-hours/2K K80 gpu-hours).
 - BNL: Peter Boyle (<u>pboyle@bnl.gov</u>)
 - FNAL: Jim Simone (<u>simone@fnal.gov</u>)
 - JLab: Robert Edwards (edwards@jlab.org)

Distribution of class A by area (class B mainly HEP)

- HFP/NP 11
 - 3 nEDM (Experiments: NP, Motivation: HEP)
 - 3 NME/FF (NP/HEP common use)
 - 4 Structure: TMD, PDF, GFF (Mostly NP, some HEP use)
 - 1 Scale-setting (mostly HEP)
- Energy Frontier (EF) 3 ½
 - BSM, Gradient Flow, etc.
- Intensity Frontier (IF) − 6½
 - 1 QCD+QED
 - 5 $\frac{1}{2}$ flavor physics, α_s etc.
- Cold NP 4
- Hot QCD 1

Distribution of Class A: By Resource

- Skylake: Request 122M, Available: 59M, Ratio: 2.05 (last year=1.88)
- KNL: Request 318M, Available: 170M, Ratio: 1.88 (last year=2.04)
- K80: Request 0.4M, Available: 0.3M, Ratio: 1.34 (last year=1.06)
- A100: Request 0.4M, Available: 0.5M, Ratio: 0.82
- RTX: Request 2.22M, Available: 1.70 M, Ratio: 1.30 (last year=1.29)
- MI100: Request 0.8M, Available: 0.4M, Ratio: 1.98 (last year=1.07)

GPUs less in demand than CPUs and KNLs (except Jlab 21g)
Some proposals can make use of multiple resources: not yet analyzed

Next Steps

- We will soon be sending questions out, please respond within a week!
- We will recommend allocations based on discussions covering:
 - scientific merit and timely impact on experimental programs
 - alignment with USQCD goals, and those of US HEP/NP programs
 - efficient use of resources
 - avoiding duplication of effort and redundancy
 - balance between HEP and NP
 - sustainability of project if cut
- Storage allocations are based on
 - broad need within USQCD
 - storage/compute costs and expected reuse valency
 - possibility of loss of data if allocations not made

Other Duties of the SPC

- Agenda of AHM
- Work with Site Managers and EC:
 - Efficient assigning of projects to resources
 - Jeopardy policies and implementation.
 - Respond to new/changes in resources throughout the allocation year.
- Work with EC on broader USQCD program
 - e.g. Snowmass, LRP, Whitepapers, reviews.
- Fulfill role of Nominating Committee for elected member of Executive Committee.

For this meeting

- Please upload your talk into Indico before the session if you are a speaker
- If you wish to ask question, or contribute to discussion:
 - For the scientific sessions, please wait until discussion time if possible
 - Use chat—to everyone
 - In general, not necessary to pose question in chat, just say you want to contribute
 - Chairman should call on you
- Please remember to "unmute" before speaking, and "mute" afterwards
- May need to turn off video if bandwidth becomes a problem

