SPC Report: Partonic Structure

Martha Constantinou

for the USQCD Scientific Program Committee

USQCD All-Hands Meeting 2023

April 20 - 21, 2023

- Form Factors and Generalized Form Factors
- Parton Distribution Functions (PDFs) $\mathbf{\star}$
- Parton Distribution Amplitudes (DA) $\mathbf{\star}$
- **Generalized Parton Distributions (GPDs)** $\mathbf{\star}$
- **Transverse-Momentum Dependent PDFs (TMD PDFs)**
- Hadronic Tensor

- Form Factors and Generalized Form Factors
- Parton Distribution Functions (PDFs) \mathbf{X}
- Parton Distribution Amplitudes (DA) X
- **Generalized Parton Distributions (GPDs)**
- **Transverse-Momentum Dependent PDFs (TMD PDFs)**
- Hadronic Tensor

Mellin moments (local OPE expansion)

$$\bar{q}(-\frac{1}{2}z)\gamma^{\sigma}W[-\frac{1}{2}z,\frac{1}{2}z]q(\frac{1}{2}z) = \sum_{n=0}^{\infty}\frac{1}{n!}z_{\alpha_{1}}\dots z_{\alpha_{n}}\left[\bar{q}\gamma^{\sigma}\overset{\leftrightarrow}{D}^{\alpha_{1}}\dots \overset{\leftrightarrow}{D}^{\alpha_{n}}\right]$$

- Form Factors and Generalized Form Factors
- Parton Distribution Functions (PDFs)
- Parton Distribution Amplitudes (DA)
- **Generalized Parton Distributions (GPDs)**
- **Transverse-Momentum Dependent PDFs (TMD PDFs)**
- Hadronic Tensor

Mellin moments (local OPE expansion)

$$\bar{q}(-\frac{1}{2}z)\gamma^{\sigma}W[-\frac{1}{2}z,\frac{1}{2}z]q(\frac{1}{2}z) = \sum_{n=0}^{\infty}\frac{1}{n!}z_{\alpha_{1}}\dots z_{\alpha_{n}}\left[\bar{q}\gamma^{\sigma}\overset{\leftrightarrow}{D}^{\alpha_{1}}\dots\right]$$

Non-local operators, boosted states \star

- Form Factors and Generalized Form Factors
- Parton Distribution Functions (PDFs)
- Parton Distribution Amplitudes (DA)
- **Generalized Parton Distributions (GPDs)**
- Transverse-Momentum Dependent PDFs (TMD PDFs)
- Hadronic Tensor

Mellin moments (local OPE expansion)

$$\bar{q}(-\frac{1}{2}z)\gamma^{\sigma}W[-\frac{1}{2}z,\frac{1}{2}z]q(\frac{1}{2}z) = \sum_{n=0}^{\infty}\frac{1}{n!}z_{\alpha_{1}}\dots z_{\alpha_{n}}\left[\bar{q}\gamma^{\sigma}\overset{\leftrightarrow}{D}^{\alpha_{1}}\dots\right]$$

Non-local operators, boosted states \mathbf{X}

4pt-functions, auxiliary fields, ... $W_{\mu\nu}(p,q) \propto \int d^4x e^{iqx} \langle \pi, \boldsymbol{p} | J^{\text{EM}}_{\mu}(x) J^{\text{EM}}_{\nu}(0) | \pi, \boldsymbol{p} \rangle$

Motivation - Impact

Complement the JLab 12 GeV, EIC, and LHC and program Physics investigations align with the experimental scientific program

Provide constraints in global analysis PDFs: input in kinematic regions that lack data GPDS: guide Q² parameterizations TMD PDFs: provide Collins-Sopper Kernel to disentangle from TMDs

Input on mesonic structure t-dependence of pion and kaon structure

2022-2023 Type A Proposals

All continuation proposals

PI	Institution	Project Title
Constantinou	Temple	Twist-3 GPDs from Lattice QCD
Engelhardt	NMSU	Nucleon Quark-Gluon Structure with Clover-V
Gao	ANL	Computing the large-\$Q^2\$ Kaon Form Factor
Jay	MIT	A Lattice Calculation of the Hadron Tensor of
Lin	MSU	Constraining the Bjorken-x Dependence of th
Richards	JLab	Parton Distribution Functions and Amplitudes
Wagman	FNAL	Computing the Collins-Soper Kernel for TMD

/ilson Fermions
rs with Physical Quark Masses
he Pion
e Strange Distribution of the Proton Using Lattice Inputs
of the PseudoscalarMesons and the Nucleon from Lattice QCD
Evolution at the Physical Quark Masses

2022-2023 Type A Proposals

All continuation proposals

PI	Institution	Project Title
Constantinou	Temple	Twist-3 GPDs from Lattice QCD
Engelhardt	NMSU	Nucleon Quark-Gluon Structure with Clover-V
Gao	ANL	Computing the large-\$Q^2\$ Kaon Form Factor
Jay	MIT	A Lattice Calculation of the Hadron Tensor of
Lin	MSU	Constraining the Bjorken-x Dependence of th
Richards	JLab	Parton Distribution Functions and Amplitudes
Wagman	FNAL	Computing the Collins-Soper Kernel for TMD

Dedicated talks in this session

ilson Fermions
rs with Physical Quark Masses
he Pion
e Strange Distribution of the Proton Using Lattice Inputs
of the PseudoscalarMesons and the Nucleon from Lattice QCD
Evolution at the Physical Quark Masses

Progress with current allocation DA of the pion and its Mellin moments \star within leading-twist framework (HISQ, $m_{\pi} = 140 \,\text{MeV}, a = 0.076 \,\text{fm}$)

[X. Gao et al., PRD 106 (2022) 7, 074505, arXiv:2206.04084]

PI: X. Gao Junior Investigator

Talk @ 3:25 pm

Progress with current allocation DA of the pion and its Mellin moments \star within leading-twist framework (HISQ, $m_{\pi} = 140 \,\text{MeV}, a = 0.076 \,\text{fm}$)

[X. Gao et al., PRD 106 (2022) 7, 074505, arXiv:2206.04084]

Extract the perturbative leading-twist for $\mathbf{\star}$ pion electric and gravitational FFs at large Q²

PI: X. Gao **Junior Investigator**

Talk @ 3:25 pm

Progress with current allocation DA of the pion and its Mellin moments \star within leading-twist framework (HISQ, $m_{\pi} = 140 \,\text{MeV}, a = 0.076 \,\text{fm}$)

[X. Gao et al., PRD 106 (2022) 7, 074505, arXiv:2206.04084]

Extract the perturbative leading-twist for \mathbf{X} pion electric and gravitational FFs at large Q²

PI: X. Gao **Junior Investigator**

Talk @ 3:25 pm

- 2023-2024: kaon form factors (HISQ confs with HYP-smeared clover fermions, $m_{\pi} = 140 \,\mathrm{MeV}, \, a = 0.076 \,\mathrm{fm}$
- Breit frame with boost up to ~1.5 GeV \mathbf{X}
- multiple Tsink up to ~1fm

Progress with current allocation DA of the pion and its Mellin moments \star within leading-twist framework (HISQ, $m_{\pi} = 140 \,\text{MeV}, a = 0.076 \,\text{fm}$)

[X. Gao et al., PRD 106 (2022) 7, 074505, arXiv:2206.04084]

Extract the perturbative leading-twist for \mathbf{X} pion electric and gravitational FFs at large Q²

PI: X. Gao **Junior Investigator**

Talk @ 3:25 pm

- 2023-2024: kaon form factors (HISQ confs with HYP-smeared clover fermions, $m_{\pi} = 140 \,\mathrm{MeV}, \, a = 0.076 \,\mathrm{fm}$)
- Breit frame with boost up to ~1.5 GeV \mathbf{X}
- multiple Tsink up to ~1fm

Preparatory work

\star Pion FF up to 9.3 GeV²

Data from different methods in agreement ×

- Vector, Axial FFs at high-Q², TMDs, connections with quark OAM \star
- Nf=2+1 dynamical Wilson-clover fermions, domain wall fermions (role of chiral symmetry) \star

PI: M. Engelhardt

Vector, Axial FFs at high-Q², TMDs, connections with quark OAM

Nf=2+1 dynamical Wilson-clover fermions, domain wall fermions (role of chiral symmetry)

Tension with JLab12 GeV data — excited states investigation

 \star

 \star

PI: M. Engelhardt

Vector, Axial FFs at high-Q², TMDs, connections with quark OAM

×

 $\mathbf{\star}$

 \star

Nf=2+1 dynamical Wilson-clover fermions, domain wall fermions (role of chiral symmetry)

Tension with JLab12 GeV data — excited states investigation

u, d flavor decomposition of nucleon form factors

Inclusion of disconnected will be considered (near physical point)

PI: M. Engelhardt

Vector, Axial FFs at high-Q², TMDs, connections with quark OAM

Nf=2+1 dynamical Wilson-clover fermions, domain wall fermions (role of chiral symmetry)

Tension with JLab12 GeV data — excited states investigation

u, d flavor decomposition of nucleon form factors

 $\mathbf{\star}$

 \star

Inclusion of disconnected will be considered (near physical point)

PI: M. Engelhardt

2023-2024: \star FFs at high-Q² (physical point, Tsink > 1fm, Q^2 up to 11.6 GeV²

Longitudinally polarized TMD/GTMD \star

Vector, Axial FFs at high-Q², TMDs, connections with quark OAM

Nf=2+1 dynamical Wilson-clover fermions, domain wall fermions (role of chiral symmetry)

Tension with JLab12 GeV data — excited states investigation

u, d flavor decomposition of nucleon form factors

 $\mathbf{\star}$

Inclusion of disconnected will be considered (near physical point)

PI: M. Engelhardt

2023-2024: × FFs at high-Q² (physical point, Tsink > 1fm, Q^2 up to 11.6 GeV²

Longitudinally polarized TMD/GTMD \star

Preparatory work

transverse nucleon spin quantities (e.g., generalized worm-gear shift)

OAM from Ji, Jaffe-Manohar sum rules $\mathbf{\star}$

$\eta v + \frac{z}{2}$

2023-2024 proposal

- \star
- Analysis improvement on strange asymmetry input for CT18 global fits \star

Extend work on strange PDFs using Nf=2+1+1 clover on HISQ fermions ($m_{\pi} = 310 \text{ MeV}, a = 0.06 \text{ fm}$)

2023-2024 proposal

- \star
- Analysis improvement on strange asymmetry input for CT18 global fits \star

Preparatory work

Mightable Nf=2+1+1 clover on HISQ fermions ($m_{\pi}^{\text{sea}} = 310 \text{ MeV}, a = 0.12 \text{ fm}, m_{\pi}^{\text{val}} = 310,690 \text{ MeV}$ **)**

[Zhang et al., PRD 104, (2021) 9, 094511]

Strange-quark asymmetry from lattice data compatible with zero

Extend work on strange PDFs using Nf=2+1+1 clover on HISQ fermions ($m_{\pi} = 310 \text{ MeV}, a = 0.06 \text{ fm}$)

2023-2024 proposal

- $\mathbf{\star}$
- Analysis improvement on strange asymmetry input for CT18 global fits $\mathbf{\star}$

Preparatory work

M Nf=2+1+1 clover on HISQ fermions ($m_{\pi}^{\text{sea}} = 310 \text{ M}$

[Zhang et al., PRD 104, (2021) 9, 094511]

Strange-quark asymmetry from lattice data compatible with zero

Lattice data incorporated in CT18A (includes ATLAS $\sqrt{s}=7$ TeV W,Z combined cross-section measurements) with no assumption of strange-quark asymmetry

Extend work on strange PDFs using Nf=2+1+1 clover on HISQ fermions ($m_{\pi} = 310 \text{ MeV}, a = 0.06 \text{ fm}$)

IeV,
$$a = 0.12 \,\mathrm{fm}, \, m_{\pi}^{\mathrm{val}} = 310, 690 \,\mathrm{MeV}$$
)

2023-2024 proposal

- X
- Analysis improvement on strange asymmetry input for CT18 global fits ×

Preparatory work

M Nf=2+1+1 clover on HISQ fermions ($m_{\pi}^{\text{sea}} = 310 \text{ M}$

[Zhang et al., PRD 104, (2021) 9, 094511]

Strange-quark asymmetry from lattice data compatible with zero

Lattice data incorporated in CT18A (includes ATLAS $\sqrt{s}=7$ TeV W,Z combined cross-section measurements) with no assumption of strange-quark asymmetry

Extend work on strange PDFs using Nf=2+1+1 clover on HISQ fermions ($m_{\pi} = 310 \text{ MeV}, a = 0.06 \text{ fm}$)

IeV,
$$a = 0.12 \,\mathrm{fm}, \, m_{\pi}^{\mathrm{val}} = 310, 690 \,\mathrm{MeV}$$
)

2023-2024 proposal

- Analysis improvement on strange asymmetry input for CT18 global fits ×

Preparatory work

Nf=2+1+1 clover on HISQ fermions ($m_{\pi}^{\text{sea}} = 310 \text{ M}$

[Zhang et al., PRD 104, (2021) 9, 094511]

Strange-quark asymmetry from lattice data compatible with zero

Lattice data incorporated in CT18A (includes ATLAS $\sqrt{s}=7$ TeV W,Z combined cross-section measurements) with no assumption of strange-quark asymmetry

Extend work on strange PDFs using Nf=2+1+1 clover on HISQ fermions ($m_{\pi} = 310 \text{ MeV}, a = 0.06 \text{ fm}$)

IeV,
$$a = 0.12 \,\mathrm{fm}, \, m_{\pi}^{\mathrm{val}} = 310,690 \,\mathrm{MeV}$$
)

Phenomenology Impact on ATLAS 7

- \mathbf{X}
- **2022: results with 2+1 clover fermions (** $m_{\pi} = 360 \text{ MeV}, a = 0.093 \text{ fm}$ **)** \star quark helicity & transversity PDF, gluon unpolarized & helicity PDF

PI: D. Richards

Methodology: pseudo-PDFs, distillation / syst. effects: higher-twist effects, z^2 contaminating amplitude

- **2022: results with 2+1 clover fermions (** $m_{\pi} = 360 \text{ MeV}, a = 0.093 \text{ fm}$ **)** \star quark helicity & transversity PDF, gluon unpolarized & helicity PDF

Akaike Information Criterion used to average over model functions and cuts in range of lattice data.

PI: D. Richards

Methodology: pseudo-PDFs, distillation / syst. effects: higher-twist effects, z^2 contaminating amplitude

- **2022: results with 2+1 clover fermions (** $m_{\pi} = 360 \text{ MeV}, a = 0.093 \text{ fm}$ **)** \star quark helicity & transversity PDF, gluon unpolarized & helicity PDF

Akaike Information Criterion used to average over model functions and cuts in range of lattice data.

T

M. Constantinou, USQCD AHM 2023

PI: D. Richards

Methodology: pseudo-PDFs, distillation / syst. effects: higher-twist effects, z^2 contaminating amplitude

1.0

- **2022: results with 2+1 clover fermions (** $m_{\pi} = 360 \text{ MeV}, a = 0.093 \text{ fm}$ **)** quark helicity & transversity PDF, gluon unpolarized & helicity PDF

Akaike Information Criterion used to average over model functions and cuts in range of lattice data.

T

PI: D. Richards

Methodology: pseudo-PDFs, distillation / syst. effects: higher-twist effects, z^2 contaminating amplitude

Hint for a nonzero gluon spin contribution to proton spin No positivity constraint: magnitude/sign of gluon helicity undetermined

- **2022: results with 2+1 clover fermions (** $m_{\pi} = 360 \text{ MeV}, a = 0.093 \text{ fm}$ **)** quark helicity & transversity PDF, gluon unpolarized & helicity PDF

Akaike Information Criterion used to average over model functions and cuts in range of lattice data.

T

M. Constantinou, USQCD AHM 2023

PI: D. Richards

Methodology: pseudo-PDFs, distillation / syst. effects: higher-twist effects, z^2 contaminating amplitude

Hint for a nonzero gluon spin contribution to proton spin No positivity constraint: magnitude/sign of gluon helicity undetermined

2023 work plan:

Focus on gluon and sea-quark contributions, GPDs

1.0

- Two additional ensembles
 - $(m_{\pi} = 270 \,\mathrm{MeV}, a = 0.072, 0.093 \,\mathrm{fm})$

 \star Lack density interpretation, but can be sizable

$$f_i = f_i^{(0)} + \frac{f_i^{(1)}}{Q} + \frac{f_i^{(2)}}{Q^2} \cdots$$

- **★** Kinematically suppressed Difficult to isolate experimentally
- ★ Understanding importance of q-g-q: WW approximation

PI: M. Constantinou

 \star Lack density interpretation, but can be sizable

$$f_i = f_i^{(0)} + \frac{f_i^{(1)}}{Q} + \frac{f_i^{(2)}}{Q^2} \cdots$$

- **★** Kinematically suppressed **Difficult to isolate experimentally**
- \star Understanding importance of q-g-q: WW approximation

PI: M. Constantinou

 \star Lack density interpretation, but can be sizable

$$f_i = f_i^{(0)} + \frac{f_i^{(1)}}{Q} + \frac{f_i^{(2)}}{Q^2} \cdots$$

- **★** Kinematically suppressed Difficult to isolate experimentally
- \star Understanding importance of q-g-q: WW approximation

PI: M. Constantinou

Proposal: GPDs, \star Nf=2+1+1 twisted mass fermions $\{m_{\pi}, a\} = \{250 \,\mathrm{MeV}, 0.08 \,\mathrm{fm}\}\$

Parametrization of matrix elements in Lorentz invariant amplitudes

$$-z^{\mu}MA_{2} + \frac{\Delta^{\mu}}{M}A_{3} + i\sigma^{\mu z}MA_{4} + \frac{i\sigma^{\mu\Delta}}{M}A_{5} + \frac{P^{\mu}i\sigma^{z\Delta}}{M}A_{6} + \frac{z^{\mu}i\sigma^{z\Delta}}{M}A_{7} + \frac{\Delta^{\mu}i\sigma^{z\Delta}}{M}A_{7} + \frac{\Delta^{\mu}i\sigma^{z}}{M}A_{7} + \frac{\Delta^{\mu}i\sigma^{z}}{M}A_{7} + \frac{\Delta^{\mu}i\sigma^{z}}{M}A_{7} +$$

Main advantage Applicable to any kinematic frame

 $A_8 \left| u(p, \lambda) \right|$

 \star Lack density interpretation, but can be sizable

$$f_i = f_i^{(0)} + \frac{f_i^{(1)}}{Q} + \frac{f_i^{(2)}}{Q^2} \cdots$$

- **★** Kinematically suppressed Difficult to isolate experimentally
- \star Understanding importance of q-g-q: WW approximation

PI: M. Constantinou

Proposal: GPDs, × Nf=2+1+1 twisted mass fermions $\{m_{\pi}, a\} = \{250 \,\mathrm{MeV}, 0.08 \,\mathrm{fm}\}\$

Parametrization of matrix elements in Lorentz invariant amplitudes

$$-z^{\mu}MA_{2} + \frac{\Delta^{\mu}}{M}A_{3} + i\sigma^{\mu z}MA_{4} + \frac{i\sigma^{\mu\Delta}}{M}A_{5} + \frac{P^{\mu}i\sigma^{z\Delta}}{M}A_{6} + \frac{z^{\mu}i\sigma^{z\Delta}}{M}A_{7} + \frac{\Delta^{\mu}i\sigma^{z\Delta}}{M}A_{7} + \frac{\Delta^{\mu}i\sigma^{z}}{M}A_{7} + \frac{\Delta^{\mu}i\sigma^{z}}{M}A_{7} + \frac{\Delta^{\mu}i\sigma^{z}}{M}A_{7} +$$

Collins-Soper evolution kernel: (Nf=2+1+1, HISQ, $m_{\pi} = 140 \text{ MeV}, a = 0.09 \text{ fm}$) \star relates transverse momentum-dependent parton distribution functions at different energy scales

Scale evolution

$$f_{i}^{\mathrm{TMD}}\left(x,\vec{b}_{T},\mu,\zeta\right) = f_{i}^{\mathrm{TMD}}\left(x,\vec{b}_{T},\mu_{0},\zeta_{0}\right)\exp\left[\int_{\mu_{0}}^{\mu}\frac{\mathrm{d}\mu'}{\mu'}\gamma_{\mu}^{i}\left(\mu',\zeta_{0}\right)\right]\exp\left[\frac{1}{2}\gamma_{\zeta}^{i}\left(\mu,b_{T}\right)\ln\frac{\zeta}{\zeta_{0}}\right]$$

- bT : transverse displacement
- μ 0 : virtuality scale
- $\zeta 0$: hadron mom. scale

Ratios of operators with staple-shape WL

$\oint \overline{q}_i(z^\mu + b^\mu)$

Collins-Soper evolution kernel: (Nf=2+1+1, HISQ, $m_{\pi} = 140 \text{ MeV}, a = 0.09 \text{ fm}$) \star relates transverse momentum-dependent parton distribution functions at different energy scales

Scale evolution

$$f_{i}^{\mathrm{TMD}}\left(x,\vec{b}_{T},\mu,\zeta\right) = f_{i}^{\mathrm{TMD}}\left(x,\vec{b}_{T},\mu_{0},\zeta_{0}\right)\exp\left[\int_{\mu_{0}}^{\mu}\frac{\mathrm{d}\mu'}{\mu'}\gamma_{\mu}^{i}\left(\mu',\zeta_{0}\right)\right]\exp\left[\frac{1}{2}\gamma_{\zeta}^{i}\left(\mu,b_{T}\right)\ln\frac{\zeta}{\zeta_{0}}\right]$$

bT : transverse displacement

 μ 0 : virtuality scale

 $\zeta 0$: hadron mom. scale

Perturbative

Non-pert (small parton transverse momentum): 1/bT ~ Λ_{QCD}

Ratios of operators with staple-shape WL

$\oint \overline{q}_i(z^\mu + b^\mu)$

Collins-Soper evolution kernel: (Nf=2+1+1, HISQ, $m_{\pi} = 140 \text{ MeV}, a = 0.09 \text{ fm}$) \star relates transverse momentum-dependent parton distribution functions at different energy scales

Scale evolution

$$f_i^{\text{TMD}}\left(x, \vec{b}_T, \mu, \zeta\right) = f_i^{\text{TMD}}\left(x, \vec{b}_T, \mu_0, \zeta_0\right) \exp\left[\int_{\mu_0}^{\mu} \frac{\mathrm{d}\mu'}{\mu'} \gamma_{\mu}^i\left(\mu', \zeta_0\right)\right] \exp\left[\frac{1}{2} \gamma_{\zeta}^i\left(\mu, b_T\right) \ln\frac{\zeta}{\zeta_0}\right]$$

2022: Nf=2+1+1, HISQ, $m_{\pi} = 140 \text{ MeV}, a = 0.12 \text{ fm}$ \star TMDWF via pion quasi TMDWFs with non-pert. renormalization and NLO matching ($b_{\tau} \leq 0.6$ fm)

bT : transverse displacement

 μ 0 : virtuality scale

 $\zeta 0$: hadron mom. scale

Perturbative

Non-pert (small parton transverse momentum): 1/bT ~ Λ_{QCD}

Ratios of operators with staple-shape WL

$\mathbf{b} \overline{q}_i(z^\mu + b^\mu)$

Collins-Soper evolution kernel: (Nf=2+1+1, HISQ, $m_{\pi} = 140 \text{ MeV}, a = 0.09 \text{ fm}$) \star relates transverse momentum-dependent parton distribution functions at different energy scales

Scale evolution

$$f_i^{\text{TMD}}\left(x, \vec{b}_T, \mu, \zeta\right) = f_i^{\text{TMD}}\left(x, \vec{b}_T, \mu_0, \zeta_0\right) \exp\left[\int_{\mu_0}^{\mu} \frac{\mathrm{d}\mu'}{\mu'} \gamma_{\mu}^i\left(\mu', \zeta_0\right)\right] \exp\left[\frac{1}{2} \gamma_{\zeta}^i\left(\mu, b_T\right) \ln\frac{\zeta}{\zeta_0}\right]$$

2022: Nf=2+1+1, HISQ, $m_{\pi} = 140 \text{ MeV}, a = 0.12 \text{ fm}$ \star TMDWF via pion quasi TMDWFs with non-pert. renormalization and NLO matching ($b_{\tau} \lesssim 0.6$ fm)

TMDs

PI: M. Wagman

bT : transverse displacement

 μ 0 : virtuality scale

Ratios of operators with

staple-shape WL

 $\zeta 0$: hadron mom. scale

Perturbative

Non-pert (small parton transverse momentum): 1/bT ~ Λ_{QCD}

$\mathbf{b} \overline{q}_i(z^\mu + b^\mu)$

Collins-Soper evolution kernel: (Nf=2+1+1, HISQ, $m_{\pi} = 140 \text{ MeV}, a = 0.09 \text{ fm}$) \star relates transverse momentum-dependent parton distribution functions at different energy scales

Scale evolution

$$f_i^{\text{TMD}}\left(x, \vec{b}_T, \mu, \zeta\right) = f_i^{\text{TMD}}\left(x, \vec{b}_T, \mu_0, \zeta_0\right) \exp\left[\int_{\mu_0}^{\mu} \frac{\mathrm{d}\mu'}{\mu'} \gamma_{\mu}^i\left(\mu', \zeta_0\right)\right] \exp\left[\frac{1}{2} \gamma_{\zeta}^i\left(\mu, b_T\right) \ln\frac{\zeta}{\zeta_0}\right]$$

2022: Nf=2+1+1, HISQ, $m_{\pi} = 140 \text{ MeV}, a = 0.12 \text{ fm}$ \star TMDWF via pion quasi TMDWFs with non-pert. renormalization and NLO matching ($b_{\tau} \lesssim 0.6$ fm)

TMDs

PI: M. Wagman

bT : transverse displacement

 μ 0 : virtuality scale

Ratios of operators with

 $\zeta 0$: hadron mom. scale

Non-pert (small parton transverse momentum): 1/bT ~ Λ_{QCD}

Hadron tensor of pion

- **2023:** Nf=2+1+1 HISQ fermions ($m_{\pi} = 135 \text{ MeV}, a = 0.12, 0.15 \text{ fm}$)
- Calculation of 4-pt functions: computationally challenging, but no need for $\mathbf{\star}$ high momentum boost or matching formalism
- Scalar and vector cases
- Study of reconstruction methods of the physical HT from Euclidean HT: $\mathbf{\star}$ Laplace transform

 $W_{\mu\nu}(p,q) \propto \int d^4x e^{iqx} \langle \pi, \boldsymbol{p} | J^{\text{EM}}_{\mu}(x) J^{\text{EM}}_{\nu}(0) | \pi, \boldsymbol{p} \rangle$

PI: W. Jay

Junior investigator

Talk @ 3:10 pm

Hadron tensor of pion

- **2023:** Nf=2+1+1 HISQ fermions ($m_{\pi} = 135 \text{ MeV}, a = 0.12, 0.15 \text{ fm}$) \star
- Calculation of 4-pt functions: computationally challenging, but no need for × high momentum boost or matching formalism
- Scalar and vector cases
- Study of reconstruction methods of the physical HT from Euclidean HT: $\mathbf{\star}$ Laplace transform

 $W_{\mu\nu}(p,q) \propto \int d^4x e^{iqx} \langle \pi, \boldsymbol{p} | J^{\text{EM}}_{\mu}(x) J^{\text{EM}}_{\nu}(0) | \pi, \boldsymbol{p} \rangle$

Finite-volume spectral densities (a = 0.12 fm) associated with scalar and vector 2pt functions. Reconstruction using a novel procedure developed by group. Peaks compatible to omeson around 770 MeV near the location of the lightest vector resonances.

PI: W. Jay

Junior investigator

Talk @ 3:10 pm

Hadron tensor of pion

- **2023:** Nf=2+1+1 HISQ fermions ($m_{\pi} = 135 \text{ MeV}, a = 0.12, 0.15 \text{ fm}$) \star
- Calculation of 4-pt functions: computationally challenging, but no need for \star high momentum boost or matching formalism
- Scalar and vector cases
- Study of reconstruction methods of the physical HT from Euclidean HT: \star Laplace transform

 $W_{\mu\nu}(p,q) \propto \int d^4x e^{iqx} \langle \pi, \boldsymbol{p} | J^{\text{EM}}_{\mu}(x) J^{\text{EM}}_{\nu}(0) | \pi, \boldsymbol{p} \rangle$

Finite-volume spectral densities (a = 0.12 fm) associated with scalar and vector 2pt functions. Reconstruction using a novel procedure developed by group. Peaks compatible to omeson around 770 MeV near the location of the lightest vector resonances.

Focus: quantify systematics related to finite-volume that may be leading the uncertainties

Long-term plan: investigate other systems, e.g., proton

PI: W. Jay

Junior investigator

Talk @ 3:10 pm

	SPC Report
15:00	QCD trace anomaly form factors
	Hadronic Tensor of the pion
	Kaon form factors
	Discussion

Session Schedule

Martha Constantinou

14:40 - 14:55

Bigeng Wang

14:55 - 15:10

William Jay

15:10 - 15:25

Dr Xiang Gao

15:25 - 15:40

Martha Constantinou

15:40 - 15:55

