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Eight proposals related to precision EW & QCD
1. K → ππ decay at the phys. point with periodic BCs , Tomii – RBC & UKQCD

2. Muon g-2 HVP from Nf =2+1+1 HISQ , Lynch – Fermi-MILC

3. Continuation: QCD + QED studies , Jin – Uconn & BNL

4. Semileptonic B decays with a vector final state , Lytle – Fermilab-MILC

5. New ensembles for precision light-meson decay constants , Gottlieb – MILC

6. Scale setting studies on the MILC HISQ ensembles , Bazavov – Fermi-MILC

7. From BSM to αs in QCD at the Z-pole: 2023-2024 , Kuti – LatHC

8. Gradient flow renormalization scheme , Hasenfratz & Witzel
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Motivation
Precision Weak decays


| Vud |
π → ℓν

| Vus |
K → ℓν

K → πℓν

| Vub |
B̄ → πℓν

| Vcd |
D → ℓν

D → πℓν

| Vcs |
Ds → ℓν
D → Kℓν

| Vcb |
B̄ → D∗ℓν

| Vtd |

B0
d -B̄0

d

| Vts |

B0
s -B̄0

s

| Vtb |
∼ 1



K → ππ and CP-violation ϵ′ ⇒ talk

Heavy meson decays and experiments at
BES III, Belle II, and LHCb.

SM predictions for |Vcb| and Rτ/ℓ(D∗
(s)).

QED effects needed for precision |Vud |, |Vus|.

Muon g-2

The hadronic contibutions to muon
g-2 contribute the leading
uncertainty to the SM calculation.

The lattice calculation is a priority for
both USQCD and the world-wide
community.

Precision αMS

QCD coupling, αMS, is a leading
source of uncertainty in SM rates for
H → gg and H → bb̄.
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Muon g-2 HVP from HISQ: accomplishments
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FIG. 15. Comparison of our lattice determination of all,W
µ (conn.) (red circle) labeled “Fermi-

lab/HPQCD/MILC 23” to nf = 2+1+1 (black circles) and nf = 2+1 (black squares) lattice-QCD

calculations by RBC/UKQCD 23 [38], ETMC 22 [37], Mainz/CLS 22 [36], Aubin et al. 22 [33],

�QCD 22 [92], BMW 21 [29] and Lehner & Meyer 20 [93]. Results by Aubin et al. 19 [71] and

RBC/UKQCD 18 [32], shown in grey, are superseded by Aubin et al. 22 and RBC/UKQCD 23,

respectively. The inner error bar shown for our result is from Monte Carlo statistics.
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FIG. 16. Comparison of our lattice determination of all,W2
µ (conn.) (red circle) labeled “Fermi-

lab/HPQCD/MILC 23” with the result of Ref. [33] (black circle) labeled Aubin et al. 22. The

inner error bar shown for our result is from Monte Carlo statistics.

of this quantity are under reasonable control. It is therefore unlikely that the di↵erences
between the lattice-QCD calculations reported in Refs. [29, 36–38] and the data-driven
result of Ref. [35] will be resolved by further improvements in lattice-QCD calculations
of all,W

µ (conn.). Lattice-QCD calculations of the quark-connected contributions from heavier
flavors are also unlikely causes of the di↵erence, since their uncertainties are smaller by an
order of magnitude [29, 95, 96]. The quark-disconnected and isospin-breaking contributions
to aHVP,LO

µ , however, have been computed by only a few collaborations [29, 32, 38, 39,

87, 97].9 Although these contributions are too small to change aW
µ substantially, additional

9 Indeed, only the BMW collaboration [29] has presented a complete calculation of all contributions to

aHVP,LO
µ including the disconnected QED and disconnected strong-isospin-breaking corrections.
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TABLE IV. Approximate error budgets for all,W
µ (conn.) and all,W2

µ (conn.).

Source �all,W
µ (conn.) (%) �all,W2

µ (conn.) (%)

Monte Carlo statistics 0.19 2.44

Continuum extrapolation (a ! 0, �TB) 0.34 1.05

Finite-volume correction (�FV) 0.16 0.23

Pion-mass adjustment (�M⇡) 0.06 0.96

Scale setting (w0 (fm), w0/a) 0.24 1.28

Current renormalization (ZV ) 0.17 0.16

Total 0.50% 3.18%

renormalization are also non-neglible, and are roughly commensurate. For all,W2
µ (conn.),

Monte-Carlo statistics are by far the largest source of uncertainty. Following that, the con-
tributions from scale setting, the continuum extrapolation, and the pion-mass adjustment,
which are ⇠ 50–60% smaller. Although finite-volume and current-renormalization errors are
negligible compared with these other uncertainties, they will be important for calculations
of aHVP,LO

µ aiming for . 0.5% precision.

IV. SUMMARY AND OUTLOOK

In Fig. 15, we compare our intermediate-window result, Eq. (3.18), with other lattice-
QCD calculations of this quantity [29, 32, 33, 36–38, 71, 92, 93], which were obtained using
di↵erent lattice actions and analysis methods. Of the results to date, ours has the smallest
statistical uncertainty, 0.19%. Ours is also the first result for all,W

µ (conn.) obtained from
a blind analysis. While some form of EFT-inspired correction schemes were employed in
every calculation, our analysis is the first to include all of them. Because we incorporate
uncertainties due to analysis choices via Bayesian model averaging [46, 47], our systematic
error estimate is robust without being overly conservative.

In Fig. 16, we compare our result for the “W2” window observable, Eq. (3.19), with the
only other available lattice-QCD result for this quantity [33]. Although the results appear
consistent, they are not wholly independent because the analysis in Ref. [33] is based on
some of the same ensembles as employed in this work. Statistical and systematic correlations
due to the shared configurations must be taken into account to make a quantitative compar-
ison. Other independent lattice-QCD calculations of all,W2

µ (conn.) would provide welcome
consistency checks.

Before our results for all,W
µ (conn.) and all,W2

µ (conn.) can be directly compared with data-
driven determinations, the contributions from heavier flavors must be added as well as
those from quark-line disconnected contractions and isospin-breaking corrections (QED and
mu 6= md). The s-, c-, and b-quark-connected contributions to aHVP,LO

µ have already been
computed on the HISQ ensembles with high precision [94–96]; windowing these results will
be straightforward. The remaining contributions are being computed in ongoing projects;
see Refs. [40–42, 50].

Looking at the big picture, the observed consistency between so many di↵erent, largely
independent, results for the light-quark connected contribution to the intermediate-window
observable (see Fig. 15) indicates that the systematic errors in lattice-QCD calculations
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arXiv:2212.12648

The value of all,W
µ (conn.) in the “intermediate

window”, a ∈ [0.4,1.0] fm, was proposed by
RBC/UKQCD and has been adopted as a
benchmark quantity to compare lattice
determinations of HVP.

Intermediate-window contribution (left) is less
sensitive to discretization effects from short
distances and noise from long distances.

Fermilab MILC did a blind analysis and has
published a complete error budget.
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Muon g-2 HVP from HISQ: plans
Use USQCD and LCF resources to approach the goal of computing the
leading-order HVP contribution with subpercent precision.

This project addresses significant uncertainties in the recent calculation from finite
volume and electromagnetic effects.

A companion project, scale setting on HISQ ensembles, addresses the other
significant uncertainty.

This year begins an exploratory calculation of QED corrections to HVP at leading
order by calculating the single-photon exchange diagrams. Testing various noise
reduction techniques is planned.

Project requests LQ2 GPU cluster time since the large GPU and system
memories will help when computing the needed eigenvectors.
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QCD + QED studies – Tomii – RBC & UKQCD

γ
π
0

π
0

γK/π K/π

γ

x 0
K/π K/π

Figure 1: Diagrams for QED corrections to pion and kaon masses, some
additional disconnected diagrams are not included and not shown.

Volume a�1 (GeV) L (fm) M⇡ (MeV) tsep (a)

48I 483 ⇥ 96 1.730(4) 5.5 135 12

64I 643 ⇥ 128 2.359(7) 5.4 135 18

24D 243 ⇥ 64 1.0158(40) 4.7 142 8

32D 323 ⇥ 64 1.0158(40) 6.2 142 8

32Dfine 323 ⇥ 64 1.378(7) 4.6 144 10

24DH 243 ⇥ 64 1.0158(40) 4.7 341 8

Table 1: List of the ensembles used in the calculations and their properties.
They are generated by the RBC and UKQCD collaborations. [2] Note we
use a partially quenched quark mass for 48I and 64I ensembles. The unitary
pion mass for both 48I and 64I ensembles is 139 MeV. We use unitary quark
masses for all the other ensembles.

the same set of RBC-UKQCD (M)DWF ensembles which were used to calcu-
late the pion mass splitting in our previous work [1]. We list the ensembles
in Table 1. Most of these ensembles are at the physical pion mass. The
preliminary results for 64I is plotted in Fig. 2. The calculation employes the
infinite volume reconstruction (IVR) method introduced in Ref. [3]. Renor-
malization of the quark mass due to the QED correction is underway.

The second calculation we did in the last allocation period is the hadronic
matrix elements for diagram A in the QED correction to meson leptonic
decay shown in Fig. 3. The hadronic matrix elements for other diagrams
are easier to calculate and are already calculated in earlier allocations. We
have used two point sources for the two E&M vertices x and w. We use
wall source pion / kaon interpolating operator. The flavor changing axial
vector current is treated as sink. We have around ⇠ 1000 point source
propagators for each configuration, and all ⇠ 10002 combinations are used

2
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Figure 3: Diagrams for QED corrections to meson leptonic decay. Diagram
C and E only depends on the meson decay constant.

in the contraction. Very aggressive sparsening is employed in the vertex for
the axial vector current to make the contraction cost a↵ordable. In Fig. 4,
we plot the results obtained for the following matrix elements:

HA,⇡/K(t1, t2) =
e2

if⇡/Km⇡/K

Z
d3xS�(t2 � t1, ~x)

⇥ h0|TAt(0)

Z
d3wJµ(t1, ~w)Jµ(t2, ~w + ~x)|⇡/Ki. (1)

The third calculation we did during the last allocation period is the
�W -box diagram contribution for neutron � decay. We did the calculation
similar to our earlier work on the �W -box diagram in pion � decay [4, 5,
6]. At present, we are analyzing the results from the 24D ensemble. The
contraction for the 32Dfine data is underway.

During the last allocation period, we have made two publications based
on the data obtained in the previous allocations: (1) Using the pion hadronic
tensor matrix elements, we revisited the 0⌫2� decay amplitude for ⇡� !
⇡+ + e� + e� and studied the neutrino mass dependence. The work is pub-
lished as Ref. [7]; (2) Based on the proton/neutron hadronic tensor matrix
elements for the 24D ensemble, we calculate the two-photon exchange con-
tribution to the muonic-hydrogen Lamb shift. The work is published as
Ref. [8].

4

Accomplishments:

QED: π, K masses, and leptonic width diagram A.

γ W -box diagram contribution to neutron β decay.

PhysRevD.106.074510: 0ν2β for π− → π+ e+ e−

PhysRevLett.128.172002: two photon exchange
contribution to muonic-hydrogen Lamb shift

Proposal objectives:

QED corrections to masses: π, K , n, p.

Other diagrams for leptonic decays (handle IR div.)

Proton & neutron hadronic tensor

QED corrections to HVP for muon g-2
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Semileptonic B → D∗ and Bs → D∗
s with HISQ quarks

Scalar FF for Hs → Ds with HISQ b quarks
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Figure 1: (Left) Extrapolation of heavy meson decay constant data from Ref. [9]. The current
work adapts this method to semileptonic form factors over a range of momentum. (Right) Data
for the scalar form factor for the decay Hs ! Ds at maximum momentum transfer (q2

max) as a
function of the heavy-strange Hs meson mass up to just above the Bs meson mass MBs for four
lattice spacings and various sea-quark mass ratios.

form factors is based on. As in the prior work, by including data from multiple lattice spacings we
are able to control the continuum extrapolation at MBs . Fig. 1 (right) shows that we are indeed
on track to achieve our precision goals of . 1% in the continuum.

Fig. 2 (left) shows our published results for f0 and f+ form factors for the decay D ! ⇡ [12], after
chiral and continuum interpolation/extrapolation. We achieved good overall precision at the 1-%
level, meeting our precision goal set out in earlier proposals. These and results for D(s) ! K gave
new percent-level determinations of |Vcd| and |Vcs|. Figure 2 (right) shows preliminary, blinded fit
results for the Bs ! Ds f0 form factor. In this figure the colors green, blue, and purple correspond
to results on a = 0.09, 0.06, and 0.042 fm, respectively. As the lattice spacing decreases the
heavy proxy masses become nearer to the physical b and the total recoil energy becomes greater,
explaining the “fanning” behavior in the figure. Excellent statistical precision is observed across
the range of heavy masses and away from zero recoil/q2

max.

3 Code and computational strategy

Our computational strategy was explained in our 2019 proposal. It is essentially unchanged, up
to the details of the spin-taste structure of the correlators needed for studying vector final states,
discussed below. Note that we are calculating two- and three-point functions from multiple source
times We introduce several heavy quark masses up to approximately the cuto↵ mh < 1/a. We
will reach the b quark mass on our finest lattices. For the three-point functions, we use several
source-sink separations. To cover all of the source times, momenta, operator insertions, and quark
masses, we produce several thousand correlators on each gauge configuration.

Here we briefly review our method for calculating 3-point correlation functions (see Fig. 3 for a
schematic diagram). We begin with Nrand random sources at tsource and calculate quark propagators
for Nl light and Nh heavy quarks for a range of momenta (Nmom = 8 in our work to date). These
quark propagators are used for the quarks in the final state meson (i.e., the decaying quark and the
spectator quark). Next, working from the end of the spectator-quark propagator (at time tsource+T
and for NT di↵erent source-sink separations T ), we insert the appropriate interpolating operator for

3

Request is to extend the current FNAL/MILC
calculations of semileptonic decays to include the
decays B → D∗

(s).

Extend techniques used to compute fB with HISQ
bottom quarks to SL B decays.

Objectives include SM determination of |Vcb| and
Rτ/ℓ(D∗

(s)) in combination with experiment.

New: Publication arXiv:2301.09229 analysis of
D → π, D → K , and Ds → K .

Full error budgets, blinded analysis. Highlights ⇒
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Second row CKM and unitarity – Fermilab MILC

Figure 31. Comparison of our preferred determinations of |Vcd|D!⇡ and |Vcs|D!K (blue bands)

with existing results in the literature. The outer and inner error bands show our preferred result

with and without QED uncertainties, respectively. The world’s first determination |Vcd|Ds!K is

also given. Results from FLAG are taken from Ref [36]. Results from the PDG appear in Ref. [25].

We emphasize that FLAG uses slightly di↵erent conventions for the semileptonic extraction of

|Vcd(cs)| as we used here; for instance they do not include short-distance electroweak corrections to

GF or an error from QED. For the leptonic results, we combine the latest experimental averages

reported in HFLAV [44] with the FLAG averages for fD and fDs [36]. “CKM unitarity” denotes

the global fit result reported by the PDG, which includes all available measurements (for all nine

matrix elements) imposing three-generation unitarity.

D. Tests of CKM unitarity

Our results for |Vcd| and |Vcs| enable a test of unitary in the second row of the CKM matrix,
including theoretical correlations between |Vcd| and |Vcs|. Using our preferred extractions
in Eq. (7.4) and Eq. (7.6), and |Vcb|incl+excl = (40.8 ± 1.4) ⇥ 10�3 from a combined average
of inclusive and exclusive semileptonic B-decays [25]11 yields the following result for the
deviation from unitarity in the second row:

|Vcd|2+|Vcs|2 + |Vcb|2 � 1 � 0.0286(44)Expt(78)QCD[194]QED(28)EW = �0.029(22). (7.8)

Because |Vcb| is so small compared to |Vcd| and |Vcs|, numerically indistinguishable results
are obtained (within current precision) if inclusive or exclusive values are taken for |Vcb|.
This result is compatible with three-generation CKM unitary within approximately one
standard deviation. The precision of this test is roughly 2% and is limited by the systematic

11 In particular, see the review “Semileptonic b-Hadron Decays, Determination of Vcb, Vub”

54

Results after unblinding the D-decay analysis.

Outer / inner blue band shows total uncertainty
with / without QED uncertainty.

Figure 33. Constraints on |Vcd| and |Vcs| from our results, D�meson leptonic decays, and unitarity.

The blue ellipse shows the preferred values of the present work from semileptonic decays in Eq. (7.4)

and Eq. (7.6). The green ellipse is the result of combining the latest results for the products

⌘EW|Vcd|fD+ and ⌘EW|Vcs|fDs with leptonic decay constants from lattice-QCD calculations; the

inputs values are summarized in Table XX. The dotted line comes from assuming unitarity of the

second row, taking |Vcb|incl+excl = (40.8 ± 1.4) ⇥ 10�3 [25]. In all cases, the ellipses shows the

correlated 1� (68%) confidence intervals. The inner blue ellipse shows our result without the QED

uncertainty.

Table XX. Leptonic inputs used for comparison in Fig. 33. HFLAV reports the product

⌘EW|Vcx|fD(s)
[44]. Following the prescription of the PDG [25], we include an EW+QED error

of 0.7% for the product |Vcx|fD(s)
.

Value Source

⌘EW|Vcd|fD+ = 46.2(1.0)(0.3)EW+QED MeV HFLAV [44]

⌘EW|Vcs|fDs = 245.4(2.4)(1.7)EW+QED MeV HFLAV [44]

fD+ = 212.7(0.6) MeV FNAL-MILC 2018 [32]

fDs = 249.9(0.4) MeV FNAL-MILC 2018 [32]

fDs/fD+ = 1.1749(16) FNAL-MILC 2018 [32]

37]

|Vcd|/|Vcs| = 0.23135(51) from |Vus/Vud|K`2/⇡`2 . (7.12)

As shown in Fig. 32, our preferred value in Eq. (7.7) lies roughly 1� above the result coming
from |Vus/Vud|K`2/⇡`2 and roughly 2� above that from |Vus|K`3/|Vud|0+!0+

. Our preferred
value for |Vcd| in Eq. (7.4) shows excellent agreement with |Vcd| from |Vus|K`3. Our preferred
value for |Vcs| in Eq. (7.6) lies somewhat below |Vcs| from |Vud|0+!0+

but is consistent at 1-2
standard deviations.

56

Error elipses comparing
Fermi-MILC results from SL
decays to leptonic decays.
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Proposals with HISQ lattices

Scale setting on HISQ lattices

Priority for Fermilab MILC muon g-2
project.

Scales valuable to entire community
using HISQ lattices.

Better statisics for gradient flow scales
w0, and

√
t0.

New: absolute scale from m(Ω−)
including leading EM effects.

⇒ talk

Lattices for precision fK , fπ, and f Kπ
+ (0)

Refine first-row CKM unitarity tests.

Proposal: Compute ME on re-tuned
physical-mass lattices at a ≈ 0.12 and
0.09 fm.

Progress: Generated set of 0.09 lattices
with simulation m′

s ≤ 0.6ms useful for
systematics – a community resource.

New results will help fully resolve LECs in
combined continuum and SU(3) χPT fits.

⇒ talk
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Strong coupling from gradient flow
Kuti proposal, SU(3), Nf = 0

2 New developments and precision results in the SU(3) Yang-Mills sector

Using some of our current USQCD allocation resources we extended the set of our Yang-Mills ensembles. Continued use of
the YM model provides important testing ground for planning of similar goals in QCD with three massless flavors. We report
three activities and related new results using our allocation resources in the YM sector:

In subsection 2.1 we describe the added ensembles.
In subsection 2.2 we describe the higher precision reached at weak coupling.
In subsection 2.3 we show the reach to strong coupling including the important target at g2(t0) = 15.9.
In subsection 2.4 we test a new high-precison method of the infinite volume based GF step �-function.
In subsection 2.5 we discuss the current state of the high precision YM analysis and its implications for full QCD.

2.1 The extended data set and its deployment to reach infinite volume

To get the renormalized gauge coupling g2(t) and the derivative �-function t ·dg2/dt in the infinite volume limit, we use now
46 di↵erent bare gauge couplings in the range 6/g2

0 = 4.39�11.5. At each gauge coupling we develop ensembles with L=40,
48, 56, 64 lattice volumes which are used in extrapolation to the infinite volume limit. At each L and at any given value of
6/g2

0 for any given finite flow time step we measure the renormalized coupling g2(t) and the �-function defined as t ·dg2/dt
over small ✏ step increments of the gradient flow time t/a2, as given in Eq. (1). At any given value of 6/g2

0 for any given finite
flow time step we extrapolate the volume set L = 32,36,40,48,64 to the L!1 limit.This now defines g2(t) and t ·dg2/dt in
the infinite lattice volume limit at each flow time step ✏ and at each lattice spacing, set by 6/g2

0. The result for g2(t) is
illustrated in Fig. 1 at each bare gauge coupling 6/g2

0 in the tree-level improved SSC scheme, with the SSS, SSC, WSC, and
WSS schemes defined in [9]. Similar results are obtained for t ·dg2/dt but not inlcuded in the plots here.

The extrapolated data sets of g2(t) in Fig. 1 and a similar data set for t ·dg2/dt are used in the analysis of the weak coupling
results in subsection 2.2, the step �-function in subsection 2.3 and at strong coupling in subsection 2.4.
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Figure 1: The infinite volume limit of g2(t) is shown on he left panel in the tree-level improved SSC scheme in the 6/g2
0 = 4.49� 11.2

range. The recently generated results for the 6/g2
0 = 4.39,11.5 ensembles are not shown. On the right panel it is marked by red line how

the g2(t0) = 15.79 limit is reached by several infinite volume extrapolated ensembles, as deployed in subsection 2.4.

Since the YM model in large physical volumes develops a gap, new ensembles with large sizes in the 6-7 fm range and with
high statistics set the stage for master field analysis which we include in the plans. The related ensembles include L=96 at
6/g2

0 = 4.39,4.51,4.82 and L=80 at 6/g2
0 = 4.39,4.51,4.82. Continued improvements of the YM analysis provide important

testing ground for planning of similar goals in QCD with three massless flavors.

2.2 Extended reach and improved precision of �(g(t)) = t ·dg2/dt at weak coupling

Using added gauge ensembles, as described in subsection 2.1, we were able to reach down to lower values of the
renormalized coupling in the g2 = 0.78�0.81 range. This provides very useful guidelines for the planning of new QCD
ensembels with three massless fermions in the proposal to extend high precision with in the bare gauge coupling 6/g2

0. To
match with high accuracy the 3-loop GF �-function we reach down deeper now into the weak coupling regime.The more
accurate new results help to increase the accuracy of integrating the �-function from weak coupling to the non-perturbative t0
scale which is the critical part of the analysis. Adding new ensembles also allowed us to develop and test a new infinite
volume based step �-function with high precision as discussed in subsection 2.4.

In the extrapolation scheme of the t ·dg2/dt analysis as described in subsection 2.1 we use now 46 ensembles, some of them
with increased statistics. We use at each L and at each value of the bare coupling the 5-point stencil finite di↵erence
approximation,

[�g2(t+2✏)+8g2(t+ ✏)�8g2(t� ✏)+g2(t�2✏)]/(12✏) = dg2/dt+O(✏4). (1)

Since in many of the lattice ensembles we only sample the high precision adaptive algorithm for the gradient flow in ✏ = 0.1
increments, there was some concern about the accuracy of the 5-point stencil for finite di↵erence approximation at very small
values of dg2/dt. It is easy to show that the O(✏4) error for a function f (x) is given by 1

30 f (5)(x) · ✏4 where with the very small
fifth derivative of g2(t) the approximation is very accurate and no problem is created. This is also verified directly by
replacing the finite di↵erence with seven-point stencil. Fig. 2 describes the high precision results for t ·dg2/dt with per mille
accuracy at renormalized couplings g2 = 0.80 and g2 = 0.81. The related values of the flow time in the continuum are
implicitly defined by the target g2 values.
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Figure 2: The upper left panel shows the fit to the infinite volume limit a4/L4! 0 at weak bare coupling 6/g2
0 = 11. Similarly, the upper

mid panel is the fit for t ·dg2/dt. The upper right panel shows t ·dg2/dt in the infinite volume limit at each bare coupling. The lower left
panel shows the targeted g2 = 0.80 and g2 = 0.81 values where we calculate the continuum limit of t · dg2/dt. Only 6/g2

0 = 11,11.1,11.2
contribute to the analysis. The lower mid panle and lower right panel show the a2/t! 0 continuum limit with per mille accuracy.

Compute ΛMS in theories including Nf = 3 QCD.

Complementary proposals from Kuti and
Hasenfratz ⇒ talk.

Define renormalized flow coupling, and beta
function (Vol → ∞)

g2
GF

(
t/a2;β

)
= N t2 ⟨E⟩t ;β,

β
(
g2

GF

)
= −t d

dt g2
GF.

Lattices with different β to connect perturbative
region to long-distance g2

GF

(
t0/a2) = 15.8 at the

distance scale t0.
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Flow coupling results and plans

Pure YM Hazenfratz, arxiv:2303.00704
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FIG. 13. Comparison of our result for ˘8t0⇤GF (ü) to the prelimi-
nary result by Wong et al. [20] (⁄) and Dalla Brida/Ramos [7] (À).
In addition we show values for r0⇤MS which enter the FLAG 2021
averages: ALPHA 98 [39] (ù), QCDSF/UKQCD 05 [40] (+), Bram-
billa 10 [41] (⁄), Kitazawa 16 [42] (õ), and Ishikawa 17 [43] (~).
These values are converted to˘8t0⇤GF using˘8t0_r0 from [3] (open
symbols) or Ref. [7] (filled symbols).

In addition, we compare our value to determinations of r0⇤MSlisted by the flavor lattice averaging group (FLAG) [8] to meet
the quality criteria to enter the average. These determinations
are obtained using Schrödinger functional step-scaling meth-
ods [39, 43], Wilson loops [40, 42], or the short distance poten-
tial [41]. We use the values quoted by FLAG 2021 for r0⇤MS
and convert them to ˘

8t0⇤MS using ˘
8t0_r0 = 0.948(7) [3]

(open symbols) or ˘8t0_r0 = 0.9414(90) [7] (filled symbols).
Following the FLAG convention, we refer to the di�erent re-
sults in Fig. 13 using either the name of the first author or,
if applicable, the name of the collaboration and the two-digit
year.

Given the spread in the values of ˘8t0⇤MS, further scrutiny
and understanding are needed before obtaining an average. We
note, however, that the three most recent predictions are all
mutually consistent. The high-precision result of Ref. [7] was
re-a�rmed in Ref. [44] using an alternative approach with bet-
ter control over the continuum extrapolation. The estimate
given in Ref. [38] is also consistent with these predictions. A
possible source of di�erence to the older determinations is the
conversion of r0 to ˘

8t0.

D. Nonperturbative matching of di�erent schemes

A considerable source of systematical error in our analysis
is the lack of numerical data in the g2GF < 1.8 weak coupling
regime. The gradient flow method is not e�cient at weak cou-
pling. It would be more economical to use data from exist-
ing calculations, e.g. the high precision Schrödinger functional
data of Ref. [7] in the 0 < g2GF < 1.8 regime and match it non-
perturbatively to our data.

Such a matching requires finding the relation between our
g2GF coupling and the coupling g2S of another scheme S ex-
pressed as g2GF = �

�
g2S

�. The relation of the corresponding �
functions can be obtained using the chain rule applied to the

derivative of g2GF with respect to �2, which leads to the simple
relation

�GF
�
�(g2S )

�

�®
�
g2S

� = �S
�
g2S

�
, (12)

where �®�g2S
� í d�

�
g2S

�
_dg2S . Parametrizing � as a polyno-

mial

�(x) ˘ x + x2
Np*1…
n=0

cix
i, (13)

turns Eq. (12) into a straightforward fitting problem with Npundetermined coe�cients. The only constraint is to identify
and use the renormalized coupling range in the fit where the
two schemes overlap. Such a nonperturbative matching and
combination of di�erent schemes could lead to a significantly
improved prediction. Although we do not explore this method
in the present analysis, it is worth considering in the future.

V. DISCUSSION

In this paper we present a nonperturbative determination of
the renormalization group � function for the pure gauge Yang-
Mills action. Using the gradient flow based continuous RG �
function, we present results for a wide range of values of the
renormalized running coupling. Our results span the range of
the perturbative weak coupling region g2GF ˘ 1.8 up to the
strongly coupled regime at g2GF ˘ 27. This showcases the ad-
vantage of the continuous RG � function because the continu-
ous infinite volume � function can be extended without limi-
tation to the confining region. We also demonstrate the e�ec-
tiveness of tree level improvement of the gradient flow even in
the strong coupling regime.

We investigate various sources of systematical uncertain-
ties. For most of the g2GF range covered, the systematical un-
certainties are of similar size as our statistical uncertainties
and around 0.6%. In the strong coupling region, however, fi-
nite volume e�ects tend to dominate and we conservatively
estimate an error of approximately 1.5%.

While in the weak coupling our results are close to the per-
turbative values, we observe in the confining regime that the
GF � function depends approximately linearly on the running
coupling, implying a scaling relation of the flowed energy den-
sity ÍE(t)Î Ì ↵ + btc1 with exponent c1 ˘ 1.326(12). This
observation could be related to the topological structure of the
vacuum, a possibility that warrants further investigation.

In the weak coupling regime we are able to match our nu-
merical results to the 3-loop GF � function by extending the
perturbative expression with a single g10GF term. This matching
allows us to predict the ⇤ parameter in the GF scheme. Us-
ing the perturbatively determined relation of the GF coupling
g2GF and the MS coupling, we obtain ˘

8t0⇤MS = 0.632(12),
where the error combines statistical and systematic uncertain-
ties. This value is in good agreement with recent direct deter-
minations of ˘8t0⇤MS [7, 20].

Nf = 0

Hasenfratz 23

Wong, et al., arXiv:2301.06611
Hasenfratz, et al., arXiv:2303.00704

Flow results agree, but are in
tension with other methods.

Hasenfratz plans

First extend Nf = 2 results before returning to
Nf = 3. BNL CPU-only resources may not be
sufficient to do both.

Kuti plans

Continue with Nf = 3 with a focus on stronger
coupled runs for better statistics.
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Summary

Project goals are well aligned with USQCD’s physics objectives and the needs of
the experimental programs.

These projects continue to show excellent progress towards their objectives.

For many projects, both USQCD and leadership compute resources are critcal to
meeting their goals.
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