SPC Summary: Nucleon Matrix Elements for Beyond-SM Searches

Sergey Syritsyn, for the USQCD Scientific Program Committee

> USQCD All-hands meeting, Apr 21, 2023

- Nucleon Charges & Axial form factors 1(EF/NP) : Clover-Wilson
- Nucleon Electric Dipole Moment (NP)
 3 proposals : Clover-Wilson, Domain Wall, DW+Overlap
- Gluon trace anomaly and energy-momentum form factors in the nucleon
 - 1 (NP) : contribution to the proton mass

Impact on Experimental programs

- Input to neutrino experiments DUNE / LBNE
 Axial form factors → neutrino cross-section
- Searches for BSM (HEP theory) in precision experiments (NP) Nucleon & Nuclear Electric dipole moments CPv πN couping Constraints on θ_{QCD} connected to PQ axions / DM Non-QCD sources of CPv may be connected to baryogenesis
- J/Ψ threshold photo-production at JLab, EIC
 Gluon EM tensor and contributions to the proton mass

Precision Form factors & Nucleon "Charges"

Nucleon charges with unitary clover-imp. Wilson quarks (Continuation) [NME collaboration (LANL/JLab/W&M); Rajan Gupta (PI), Sungwoo Park (talk), et al]

- electromagnetic structure & radii
- g_S, g_T: neutron β-decay sensitivity to beyond-SM physics
- g_T : Nucleon EDM from quark EDM
- helicity/transversity moments, quark momentum fraction
- disconnected contributions

Sergey Syritsyn, for USQCD SPC

SPC Summary: Nucleon Matrix Elements

USQCD All-hands meeting, Apr 21, 2023

Vector, Axial & Pseudoscalar Form factors

$$\langle p(\boldsymbol{p}) | \mathscr{A}_{\mu}^{+} | n(\boldsymbol{k}) \rangle = \bar{u}_{p}(\boldsymbol{p}) \left[\gamma_{\mu} \gamma^{5} F_{A}(q^{2}) + \frac{q_{\mu}}{2M_{N}} \gamma^{5} F_{\tilde{P}}(q^{2}) \right] u_{n}(\boldsymbol{k}),$$

$$\langle p(\boldsymbol{p}) | \mathscr{P}_{\mu}^{+} | n(\boldsymbol{k}) \rangle = \frac{2M_{N}}{m_{u} + m_{d}} \tilde{F}_{P}(q^{2}) \bar{u}_{p}(\boldsymbol{p}) \gamma^{5} u_{n}(\boldsymbol{k}),$$

$$\langle p(p) | \mathcal{V}_{\mu} | n(\boldsymbol{k}) \rangle = \bar{u}_{p}(p) \left[\gamma_{\mu} F_{1}(q^{2}) + \frac{\sigma_{\mu\nu} q^{\nu}}{2M_{N}} F_{2}(q^{2}) \right] u_{n}(\boldsymbol{k})$$

$$2 + 1 \text{ Wilson-Clover quarks [R.Gupta (Pl) ; Park et al 2103.05599]}$$

- Axial form factor: quasi-elasticE neutrino scattering
- Pseudoscalar charge & form factor muon capture (MuCAP) explore low-Q² PCAC on a lattice role of Nπ states
- Vector form factors: proton radius two-photon exchange input to GPD & PVES experiments flavor structure : u/d/s contributions

Continuation:

Further analysis of 13 ensembles

- *m*π = 280 ... 130 MeV
- *a* = 0.127 ... 0.056 fm
- $m\pi L = 3.7 \dots 6.2$

Disconnected contributions:

- chiral fits with $m\pi$ down to 170 MeV
- cont.limit with a down to 0.07 fm

Nucleon EDM

$$\mathcal{L}_{\text{int}} = eA^{\text{em}}_{\mu}\mathcal{V}^{\mu} \qquad [\sim \vec{B} \cdot \mu_N \vec{S}_N + eA^{\text{em}}_{\mu}\mathcal{A}^{\mu} \qquad [\sim \vec{E} \cdot d_N \vec{S}_N]$$

may be induced by

- θ_{QCD} angle
- quark EDM (g_T)
- quark & gluon chromo-EDM
- higher-dim BSM interactions

The most sensitive probe of non-CKM CPv:

- Any signal >10⁻⁵ · (current bound)→discovery
- θ_{QCD}-induced EDM : Strong-CP problem
- Prerequisite for Baryogenesis (non- θ_{QCD} EDM)

Lattice methods

- Imaginary) background electric field $\mathcal{H} = -\vec{d}_N \cdot \vec{E}$
- CPv form factor $F_3(Q^2 \rightarrow 0)$

$$\langle p+q|J^{\mu}|p\rangle_{\mathcal{CP}} = \bar{u}_{p'} \Big[F_1\gamma^{\mu} + (F_2 + iF_3\gamma_5)\frac{\sigma^{\mu\nu}q_{\nu}}{2m_N}\Big]u_p$$

Dirac

	10 ⁻²⁸ e cm
CURRENT LIMIT	<300
Spallation Source @ORNL	< 5
Ultracold Neutrons @LANL	~30
PSI EDM	<50 (I), <5 (II)
ILL PNPI	<10
Munich FRMII	< 5
RCMP TRIUMF	<50 (I), <5 (II)
JPARC	< 5
Standard Model (CKM)	< 0.001

$Nucleon EDM(1): \theta_{QCD}^{0.005 0.01 0.015} 0.01 0.015} 0.00 0.03 0.06 0.09 0.12$

Wilson-Clover quarks [T.Bhattacharya(PI),]

- gradient flow to determine top. charge density $\mathsf{J}\mathsf{F}\tilde{\mathsf{F}}$
- \tilde{g}_{P} : CPv πN coupling induced by θ_{QCD}
- NEXT: continue to improve stats., establish signal

DW + Overlap quarks: [Jian Liang, K.-F.Liu(PI)]:

- partial-Vol_{4D} sampling of Q (cluster decomp.)
- partial quenching : fit to valence m_q dependence
- NEXT: continue on finer *a* = 0.081 fm

Challenges:

- effect of θ_{QCD} vanishes at $m_q \rightarrow \underline{m_q}^{phys}$
- noise in global Q=∫FF grows with V₄
- dynamics depends on chiral symmetry
- $Q^2 \rightarrow 0$ extrapolation

24³x64, $m\pi \approx$ 420 MeV, LMA vs LMA+AMA

DW quarks [T.Blum, S.Syritsyn(PI), F. He]

- background electric field (valence only)
- local (timeslice) sampling of top.charge
- exploit correlation of Q and Dslash 0-modes
- NEXT: proceed to physical point (24ID)

Nucleon EDM(2) : Quark & Gluon (Weinberg) cEDM

Nucleon EDM from Theta, quark & gluon(Weinberg) chromoEDM with clover fermions [Tanmoy Bhattacharya (PI), et al]

• quark cEDM ($\overline{q} (\sigma \cdot G) \gamma_5 q$):

Wilson-Clover quarks [T.Bhattacharya, Lattice 2021; 2203.03746]

Nucleon EDM from CPv 4-quark Operators

[Cirigliano et al, 2017 (1612.03914)]

- constraints on Left-Right interaction from combined CPV in Kaons and nEDM
- nEDM from dim.analysis: large potential for impact from lattice QCD

CPv L-R interaction CPv in K $\rightarrow \pi \pi$ decays nucleon/nuclear EDM $\mathcal{O}_{\varphi ud}^{(1)} = \frac{1}{3}(\bar{u}u) (\bar{d}\gamma_5 d) + (\bar{u}T^A u) (\bar{d}\gamma_5 T^A d) - [u \leftrightarrow d]$

Also CPv from SUSY models $\mathcal{O}_{quqd}^{(1)} = (\bar{u}\gamma_5 u) (\bar{d}d) + (\bar{u}u) (\bar{d}\gamma_5 d) \\ - [(\bar{u}u)(\bar{d}d) \leftrightarrow (\bar{u}d)(\bar{d}u)]$ $\mathcal{O}_{quqd}^{(8)} = (\bar{u}\gamma_5 T^A u) (\bar{d}T^A d) + (\bar{u}T^A u) (\bar{d}\gamma_5 T^A d) \\ - [(\bar{u}u)(\bar{d}d) \leftrightarrow (\bar{u}d)(\bar{d}u)]$

nEDM contribution from 4q-CPV with Domain Wall quarks [Blum, Syritsyn(PI), F. He]

- uniform background electric field(*)
- A2A propagators of chiral-symmetric quarks

Sergey Syritsyn, for USQCD SPC

USQCD All-hands meeting, Apr 21, 2023

Gluon Trace Anomaly & Energy-Mom. FFs

Gluon contribution to the proton EM tensor using DW+Overlap [B.Wang(PI)]

$$\langle P'|(T_{q,g}^{\mu\nu})_{R}(\mu)|P\rangle/2M = \bar{u}(P')[T_{1_{q,g}}(q^{2},\mu)\gamma^{(\mu}\bar{P}^{\nu)} + T_{2_{q,g}}(q^{2},\mu)\frac{\bar{P}^{(\mu}i\sigma^{\nu)\alpha}q_{\alpha}}{2M} + D_{q,g}(q^{2},\mu)\frac{q^{\mu}q^{\nu} - g^{\mu\nu}q^{2}}{M} + \bar{C}_{q,g}(q^{2},\mu)Mg^{\mu\nu}]u(P)$$

contribution to the hadron mass

$$M_H = \langle T^{\mu}_{\mu} \rangle_H = (1 + \gamma_m) \langle H_m \rangle_H + \frac{\beta}{2g} \langle F^2 \rangle_H$$

- will be measured in J/Ψ threshold photo-production at JLab, EIC
- node in radial distribution of trace anomaly; driven by chiral condensate dynamics? [He, Sun, Yang, PRD'21]
- CONTINUATION: compute nucleon & pion trace anomaly dist. using DW+Overlap quarks up to Q² ~ 4 GeV² 24I (mπ=340MeV) 48I (mπ=140MeV)

SPC Summary: Nucleon Matrix Elements

Presentations by PIs & Discussion

- Nucleon EDM using Overlap fermions
- Nucleon EDM using Clover fermions (PI: Tanmoy Bhattacharya)
- Nucleon Matrix Elements using clover fermions
 Sungwoo Park (Los Alamos National Laboratory)
- QCD trace anomaly form factors of the nucleon energy-momentum tensor Bigeng Wang (University of Kentucky) [Partonic structure section]
- Discussion