Nuclear & Particle Physics Lattice QCD Computing Initiative

Jefferson Lab

Amitoj Singh

Thursday, April 20, 2023

Nuclear & Particle Physics Lattice Computing Initiative

• NPPLC Initiative started FY18

- Mission - "deploy & operate a significant dedicated computing resource for LQCD calculations."

- NPPLCI organization structure
 - -Robert Edwards, PI
 - Graham Heyes, Deputy
 - -Amitoj Singh, JLab LQCD site manager
 - Edwards & Singh, JLab LQCD site architects
- NPPLCI reporting structure
 - -Report annually to Research Division of DOE Office of Nuclear Physics
 - -First report (in Feb. 2020) included highlights of scientific program and future plans
 - -DOE responds to the reports; however, not under an annual panel review process
 - -For the first time NP will participate along with HEP in the annual DOE review this May 2023
 - -NPPLCI renewal review planned in 2024; this is significant
- Operations
 - Take part in annual surveys & bi-weekly facility coordination

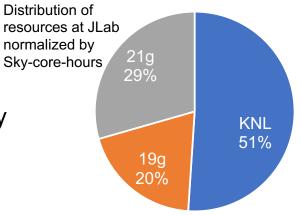
Nuclear & Particle Physics Lattice QCD Computing Initiative

- Model: dedicated facility initiative purchases systems and operates them
 - -Allows detailed tailoring of hardware & software development
 - Benefits compared to two-lab IC-based model (less constraints)
 - -Amortize overhead costs with large system acquisitions
- Annual budget of ~\$1M about 50:50 labor:hardware
 - -Hardware acquisition over FY boundaries for a bigger purchase
 - This FY23 we carried over hardware money from FY22 and will make one big purchase in FY23
- History of past procurements:
 - -FY2018: upgraded Jlab's KNL resources (added to system from FY2016)
 - -FY2019: upgraded Jlab's GPU resources (gamer-card system)
 - -FY2021: new AMD CPU + MI-100 GPU system (generation before Frontier)

- Computing Computational Sciences & Technology Division (CST) [Amber Boehnlein]
- Theory Computations and Nuclear Theory
 - -LQCD@JLab started in ~FY01 all funds directed through JLab/Theory
 - Theory and CST group have worked closely over two decades
 - -CST division very responsive to the needs of Lattice QCD Theory
 - -E.g., CST covers the cost of tape hardware, we only pay for media
- Systems based on computational requirements for Lattice QCD Theory and USQCD
 - Funding directly from DOE Office of Nuclear Physics
 - Program is coordinated with USQCD Exec. Comm and Scientific Program Comm.
 - -E.g., allocations taken from SPC

JLab & software development

- Heavy involvement since 2001 & SciDAC-1, then SciDAC-2 thru 4
- Currently, lead institution for ASCR/NP SciDAC-4 project
- Also, direct NP portion under Exascale Computing Project
- Leverage software development & local/commodity resources to efficiently utilize national resources
 - -Our community well positioned for leadership systems
 - -E.g., early adopters of NVIDIA GPUs and KNLs -> Titan and Cori-KNL
- Exascale systems now AMD and Intel GPUs
 - Opportunity/necessity to diversify our codes
- LQCD commodity systems ↔ on-ramp to LCF systems + cycles for USQCD


Exascale

- Leadership + Exascale
 - Perlmutter AMD CPU + NVIDIA GPU + Cray network
 - Frontier AMD CPU + AMD GPU + Cray network
 - -Aurora Intel CPU + Intel GPU + Cray network
- Exascale Computing Project (LQCD is one of ~20 applications)
 - Performance metric improve application performance by 50x
- LQCD code bases
 - -QUDA refactorized now "backend" support for NVIDIA, AMD, Intel GPUs
 - -Grid support for all, but focused more on Intel
 - -CPS & MILC rely on QUDA
- NP & Chroma refactored to support more GPU systems, but prioritized AMD
 - Production ready on AMD, NVIDIA, not quite ready for Intel
 - Software available on GitHub

New Hardware Acquisition

- Is a successor to KNLs.
- Considered two main metrics to quantify price-performance
 - -Wilson dslash proxy for inverters
 - -ZGEMM based contractions considering possible swapping to main memory
- Request for Information (RFI) was released on March 21 requesting information on the following hardware configuration:
 - ~75-100 compute nodes
 - an x86 (such as AMD, Intel) CPU based
 - ARM (NVIDIA Grace Superchip) based
 - A few must haves in either server design are as follows:
 - Top tier HBM (High Bandwidth Memory).
 - Low latency, high bandwidth network fabric between the compute nodes.
- 9 responses to the RFI. Supermicro included a price quote which is helpful to set a baseline.

Acquisition Steps	Task Days	Due Date
Benchmarking on shortlisted hardware configurations and configuration(s) finalized	-	6/16/2023
RFP approvals completed and released for bids.	31	7/17/2023
RFP Responses due	30	8/16/2023
PO Awarded	44	9/29/2023
Delivery of equipment	120	1/27/2024

