## Nucleon Matrix Elements using Clover-on-Clover Fermions

Rajan Gupta (PI), Tanmoy Bhattacharya, Vincenzo Cirigliano, Yong-Chull Jang, Balint Joo, Huey-Wen Lin, Santanu Mondal, Kostas Orginos, **Sungwoo Park**<sup>(1)(2)</sup>, David Richards, Frank Winter, Boram Yoon,

> <sup>(1)</sup> JLab, VA, USA <sup>(2)</sup> LLNL, CA, USA

USQCD AHM, April 21, 2023

## Outline

- Introduction
  - Physics from nucleon form factors and charges
  - Methodology for calculation of nucleon matrix elements using lattice QCD
- Excited-state effect on nucleon matrix elements
  - Effect from  $N\pi$  /  $N\pi\pi$  multihadron excited states
- Results
  - Isovector axial, electric and magnetic form factors
  - Flavor diagonal axial, scalar, and tensor charges

# Introduction

Physics from nucleon form factors and charges

Methodology for calculation of **nucleon matrix elements** using **lattice QCD** 

## Lepton-nucleon scattering

- Nucleon charges and form factors give the strength of the interaction of external probes (electrons, neutrinos, · · · ) with nucleons and are critical inputs in experimental searches of physics beyond the standard model.
- High precision results for axial, electric and magnetic form factors versus Q<sup>2</sup> needed for determining (quasi-) elastic cross-section of (ν, e, μ) scattering off nuclei

**ng**  
gth of the  
nos, 
$$\cdots$$
) with  
searches of physics  
**netic form factors**  
ic cross-section of  

$$\frac{d\sigma}{dQ^2} \left( \begin{array}{c} \nu_l + n \rightarrow l^- + p \\ \bar{\nu}_l + p \rightarrow l^+ + n \end{array} \right)$$

$$= \frac{M^2 G_F^2 cos^2 \theta_c}{8\pi E_\nu^2} \left\{ A(Q^2) \pm B(Q^2) \frac{(s-u)}{M^2} + C(Q^2) \frac{(s-u)^2}{M^4} \right\},$$

4

$$\begin{split} F_A &= \text{axial form factor} \\ \tilde{F}_P &= \text{induced pseudoscalar} \\ G_E &= F_1 - \tau F_2 \text{ Electric} \\ G_M &= F_1 + F_2 \text{ Magnetic} \\ \tau &= Q^2/4M^2 \\ M &= M_n = M_p \approx 939 \text{ MeV} \\ m &= M_\pi \end{split}$$

$$\begin{split} A(Q^2) &= \frac{(m^2 + Q^2)}{M^2} \left[ (1 + \tau) F_A^2 - (1 - \tau) F_1^2 + \tau (1 - \tau) F_2^2 + 4\tau F_1 F_2 \right. \\ &- \frac{m^2}{4M^2} \left( (F_1 + F_2)^2 + (F_A + 2F_P)^2 - 4 \left( 1 + \frac{Q^2}{4M^2} \right) F_P^2 \right) \right], \\ B(Q^2) &= \frac{Q^2}{M^2} F_A(F_1 + F_2), \\ C(Q^2) &= \frac{1}{4} (F_A^2 + F_1^2 + \tau F_2^2). \end{split}$$

#### Physics from flavor diagonal nucleon charges

•  $g_A^q = \Delta q$ : Quark contributions to the nucleon spin

$$\frac{1}{2} = \sum_{u,d,s,\dots} \left( \frac{1}{2} \Delta q + L_q \right) + J_g$$

X. Ji (1997),

 $L_q$ : orbital angular momentum of the quark  $J_q$ : total angular momentum of the gluons

•  $g_T^q$ : Quark EDM contributions to the neutron EDM  $d_n$ 

C. Baker et al. (2006)

$$|d_n| = |d_u^{\gamma} g_T^u + d_d^{\gamma} g_T^d + d_s^{\gamma} g_T^s + \dots| \le 2.9 \times 10^{-26} e \text{ cm}$$

•  $g_{S}^{q} = \frac{\partial M_{N}}{\partial m_{q}}$ : Slope of the nucleon mass with respect to the quark mass

 $\sigma_{\pi N} = m_l g_s^{u+d}$ : Quark contributions to the nucleon mass  $\sigma_s = m_s g_s^s$ 

### Connected and disconnected diagrams

- Charges / Form factors are obtained from the nucleon ME  $\langle N | \bar{q} \Gamma q | N \rangle$
- Require high precision measurements of quark bilinear operators within the nucleon state for both "connected" and "disconnected" 3-point correlation functions,



Calculated with covariant Gaussian source smearing, multiple source-sink separation  $0.9 \leq \tau \leq 1.4$ , accelerated with coherent sequential inversions and the truncated solver method with bias correction. PNDME (2018) All-to-all quark propagator estimated by stochastic method using  $Z_4$  random sources, accelerated with the truncated solver method with bias correction and hoping parameter expansion. PNDME (2015)

#### Nonperturbative renormalization

- We explicitly evaluated the  $3 \times 3$  flavor mixing matrices in RI-sMOM scheme and convert into  $\overline{\text{MS}}$  scheme value 2 GeV.
- Results on the corrections from the flavor mixing
  - Small and negligible for  $g_{A,T}^{u,d,s}$  and  $g_{S}^{u,d}$
  - $g_S^s$  gets a correction about ~20% at  $a \approx 0.15$  fm, and ~6% at  $a \approx 0.06$  fm from the off-diagonal  $Z_S^{s,u+d}$ .





## Clover fermions on 2+1-flavor Clover Ensembles

| Ensemble<br>ID | a [fm] | <i>Μ</i> <sub>π</sub><br>[MeV] | $M_{\pi}L$ | N <sub>conf</sub> | N <sub>HP</sub> | N <sub>LP</sub> |
|----------------|--------|--------------------------------|------------|-------------------|-----------------|-----------------|
| a127m285       | 0.127  | 285                            | 5.87       | 2002              | 8008            | 256256          |
| a094m270       | 0.094  | 269                            | 4.09       | 2469              | 7407            | 237024          |
| a094m270L      | 0.094  | 269                            | 6.15       | 4510              | 18040           | 577280          |
| a093m220       | 0.093  | 216                            | 4.95       | 2000              | 8000            | 256000          |
| a093m220X      | 0.093  | 214                            | 4.81       | 2005              | 8020            | 256640          |
| a091m170       | 0.091  | 169                            | 3.35       | 4012              | 16048           | 513536          |
| a091m170L      | 0.091  | 170                            | 5.01       | 3500              | 17500           | 560000          |
| a073m270       | 0.073  | 272                            | 4.81       | 4720              | 18800           | 604160          |
| a072m220       | 0.072  | 223                            | 5.10       | 2000              | 12000           | 192000          |
| a071m170       | 0.071  | 166                            | 4.28       | 3120              | 18720           | 299520          |
| a070m130       | 0.070  | 127                            | 4.37       | 2500              | 15000           | 240000          |
| a056m280       | 0.056  | 281                            | 5.10       | 3250              | 19500           | 312000          |
| a056m220       | 0.056  | 215                            | 4.38       | 2550              | 15300           | 244800          |

Analyzed for the calculation of isovector charges and form factors



Summit (GPU) at OLCF

 13 gauge ensembles with  $N_f = 2 + 1$ generated by the JLab/W&M/LANL/MIT collaborations



•  $O(2 - 6 \times 10^5)$  measurements done,  $C^{\text{imp}} = \sum_{i=1}^{N_{\text{LP}}} \frac{C_{\text{LP}}(\mathbf{x}_i^{\text{LP}})}{N_{\text{LP}}} + \sum_{i=1}^{N_{\text{HP}}} \left[ \frac{C_{\text{HP}}(\mathbf{x}_i^{\text{HP}}) - C_{\text{LP}}(\mathbf{x}_i^{\text{HP}})}{N_{\text{HP}}} \right]$ 

#### Disconnected on 2+1-flavor Clover Ensembles

| Ensemble<br>ID | a [fm] | <i>Μ</i> <sub>π</sub><br>[MeV] | $M_{\pi}L$ | N <sup>disc</sup><br>light/strange | Random srcs<br>light/strange |
|----------------|--------|--------------------------------|------------|------------------------------------|------------------------------|
| a127m285       | 0.127  | 285                            | 5.87       | 1002 / 1002                        | 7200 / 7200                  |
| a094m270       | 0.094  | 269                            | 4.09       | 1197 / 1197                        | 7200 / 7200                  |
| a094m270L      | 0.094  | 269                            | 6.15       | 1000 / 1000                        | 7200 / 7200                  |
| a093m220       | 0.093  | 216                            | 4.95       | 985 / 1368                         | 7200 / 7200                  |
| a093m220X      | 0.093  | 214                            | 4.81       |                                    |                              |
| a091m170       | 0.091  | 169                            | 3.35       | 1155 / 1155                        | 7200 / 7200                  |
| a091m170L      | 0.091  | 170                            | 5.01       |                                    |                              |
| a073m270       | 0.073  | 272                            | 4.81       | 1132 / 1378                        | 7200 / 7200                  |
| a072m220       | 0.072  | 223                            | 5.10       | 1000 / 1000                        | 7200 / 7200                  |
| a071m170       | 0.071  | 166                            | 4.28       |                                    |                              |
| a070m130       | 0.070  | 127                            | 4.37       |                                    |                              |
| a056m280       | 0.056  | 281                            | 5.10       |                                    |                              |
| a056m220       | 0.056  | 215                            | 4.38       |                                    |                              |

Analyzed and proposed for the disconnected diagrams

[PNDME, PRL 127 (2021) 242002] Nucleon sigma term  $\sigma_{\pi N}$  calculation using  $N_f = 2 + 1 + 1$  HISQ ensemble gives an interesting result, and we want to verify the result using  $N_f =$ 2 + 1 clover ensembles.

## Disconnected on 2+1+1-flavor HISQ Ensembles

| Ensemble<br>ID | a [fm] | <i>Μ</i> <sub>π</sub><br>[MeV] | $M_{\pi}L$ | N <sup>conn</sup><br>conf | N <sup>disc</sup><br>conf<br>light/strange |
|----------------|--------|--------------------------------|------------|---------------------------|--------------------------------------------|
| a15m310        | ~0.15  | 320                            | 3.93       | 1917                      | 1917 / 1917                                |
| a12m310        | ~0.12  | 310                            | 4.55       | 1013                      | 1013 / 1013                                |
| a12m220        | ~0.12  | 228                            | 4.38       | 744                       | 958 / 870                                  |
| a09m310        | ~0.09  | 313                            | 4.51       | 2263                      | 1017 / 1024                                |
| a09m220        | ~0.09  | 226                            | 4.79       | 964                       | 712 / 847                                  |
| a09m130        | ~0.09  | 138                            | 3.90       | 1290                      | 1270 / 994                                 |
| a06m310        | ~0.06  | 320                            | 4.52       | 500                       | 808 / 976                                  |
| a06m220        | ~0.06  | 235                            | 4.41       | 649                       | 1001 / 1002                                |

Flavor diagonal charge study [PNDME]

Analyzed for the disconnected diagrams



- Ensembles generated by MILC Collaboration
- 8 ensembles including one physical  $M_{\pi}^{phys}$  ensemble
- HYP smeared  $N_f = 2 + 1 + 1$ MILC HISQ lattices, Clover fermion with a tree-level tadpole improved  $c_{SW}$

# Excited-state effect

Effect from  $N\pi$  /  $N\pi\pi$  multihadron excited states

### Excited state contamination (ESC)

- Nucleon signal/noise decays  $\propto e^{-(E-1.5M_{\pi})\tau}$  with Euclidean time  $\tau$ .
- Nucleon operator creates ground state nucleons (N) plus all excited states (ES) with the same quantum number, including  $N\pi$ ,  $N\pi\pi$ ,  $N\rho$ , N(1440), N(1710), ....
  - Excited states that give significant contribution to a particular correlation function are not known a priori.  $\rightarrow \chi PT$  is a very useful guide to understand ESC
  - Physical mass ensemble (a070m130) is crucial as the mass gap of  $N\pi$  state ( $\approx 1200$  MeV) becomes significantly smaller than the lowest radial excitation N(1440)



## $G_P^{u-d}$ : Excited state effect

 $2\hat{m}G_P(Q^2) = 2M_N G_A(Q^2) - \frac{Q^2}{2M_N}\tilde{G}_P(Q^2)$ 

- [NME (2021), PRD 105 054505]  $a \approx 0.071 \text{ fm}, M_{\pi} \approx 170 \text{ MeV}$ At  $\vec{q} = \frac{2\pi}{L} (1,0,0)$
- Data displayed: 3-point/2-point ratio of correlation functions showing dependence on  $t, \tau$  due to ES
- Gray band:  $G_P^{u-d}(\vec{q})$  determined from the ES fit.



- $\chi PT$ :  $N\pi$  state coupling large in the axial current
- Output of a simultaneous fit *increases* the axial form factors by  $G_A \sim 5$  %,  $\tilde{G}_P \sim 35$  %,  $G_P \sim 35$  %
- Satisfies PCAC relation!

#### PCAC: Need to Remove Excited State Contributions



0

[NME (2021), PRD 105 054505]

$$2\widehat{m}G_P(Q^2) = 2M_N G_A(Q^2) - \frac{Q^2}{2M_N}\widetilde{G}_P(Q^2)$$

## $G_E^{u-d}$ : Excited state effect

[NME (2021), PRD 105 054505]  $a \approx 0.071 \text{ fm}, M_{\pi} \approx 170 \text{ MeV}$ At  $\vec{q} = \frac{2\pi}{L} (1,0,0)$ 

- Over 4 different strategies to control the ES effect,  $G_E^{u-d}(\vec{q})$  has  $\approx 4\%$  variation
- At larger momentum transfer  $\vec{q}$ , the data and fit become less sensitive to ES



- Data displayed: 3-point/2-point ratio of correlation functions showing dependence on  $t, \tau$  due to ES
- Gray band:  $G_E^{u-d}(\vec{q})$  determined from the ES fit.



16

## $g_S^{u+d}$ : Excited state effect

PNDME, PRL 127 (2021) 242002



- Scalar is sensitive to  $N\pi$  state
- Output is close to the phenomenological determination

# Results

Isovector axial, electric and magnetic form factors Flavor diagonal axial, scalar, and tensor charges

#### **Nucleon Isovector Form Factors**

[NME, Lattice 2022 preliminary, arXiv:2301.07885]

• Clover fermion on  $N_f = 2 + 1$  clover ensembles



#### Axial form factors

•  $N\pi$  excited state needed to satisfy PCAC relation. Impact on FF is large

## Electric & Magnetic form factors

- Less sensitive to the details of the excited states
- Good agreement with the Kelly curve [J.J.Kelly, PRC 70, 068202 (2004)] 18



## $G_A^{u-d}$ : Examined Dipole, Pade and z-expansion fits



[NME (2021), PRD 105 054505]

## $g_A^{u-d}$ : chiral continuum extrapolation

1.6 1.6 1.6  $M_{\pi}^{2}$ -Extrap  $H_{\pi}$ a127m285 ++++ a091m170 + + + a070m130 +<del>X</del>+ Extrap +++ a094m270 a091m170L a056m280 +++ 1.5 1.5 a073m270 +++ a056m220 ↦ ↔ 1.5 a094m270L Extrap +++ a093m220 🕰 a072m220 +⊟+ a071m170 +\*\* a093m220X 1.4 1.4 1.4  $g_A$ 1.3 1.3 1.3  $\phi$ 1.2 1.2 1.2  $\{4^{N\pi}, 2^{sim}, z^2\}$ 1.262(45) [0.77] 1.1 1.1 0.15 0.12 0.03 0.06 0.09 0 0.12 3 4 5 6 0 0.03 0.06 0.09  $M_{\pi}^2$  [GeV<sup>2</sup>]  $M_{\pi}L$ a [fm]

• Axial charges obtained from the  $Q^2 \rightarrow 0$  extrapolation to  $G_A(Q^2)$ 

$$g(a, M_{\pi}, M_{\pi}L) = c_1 + c_2 a + c_3 M_{\pi}^2 + c_4 \frac{M_{\pi}^2 e^{-M_{\pi}L}}{\sqrt{M_{\pi}L}}$$

[NME (2022), preliminary]

#### Nucleon Flavor Diagonal Charges : Comparison with FLAG 2021 results

#### [PNDME, Lattice 2022 preliminary, arXiv:2301.07890]

- Clover fermion on  $N_f = 2 + 1 + 1$  HISQ ensembles
- Flavor mixing calculated nonperturbatively
- Chiral-Continuum extrapolation including a data at  $M_{\pi}^{\rm Phys}$

0.01

0.01



## Summary

- We are calculating nucleon isovector form factors and flavor diagonal charges as part of a comprehensive analysis of nucleon structure
- Form factors presented as a function of  $Q^2$  over  $0.04 < Q^2 < 1 \text{ GeV}^2$ .
- We are investigating excited state effects
  - Contributions from  $N\pi$  /  $N\pi\pi$  multihadron excited states
    - Evidence of large ES for  $\tilde{G}_P$ ,  $G_P$ , and  $g_S^{u,d}$  ( $\sigma^{\pi N}$ ).
  - Need higher statistics to resolve the ES at  $M_{\pi}^{\rm Phys}$  and on finer lattices (smaller a)
  - Higher order ES fits are under investigation
  - Study with multihadron  $N\pi$  operators is in progress

## Acknowledgements

- The calculations used the CHROMA software suite.
- We thank DOE for computer time allocations at NERSC and OLCF.
- We thank the USQCD collaboration for computer time
- Institutional Computing at LANL for computer time