$K \rightarrow \pi\pi and \epsilon'$ PI: Masaaki Tomii co-PI: T. Blum, P. Boyle, D. Hoying, T. Izubuchi, L. Jin, C. Jung, A. Soni for RBC & UKQCD Collaborations

USQCD All Hands Meeting 4/21/2023

$K \rightarrow \pi \pi \& direct CPV$

ε' vs ε

- Re $(\epsilon'/\epsilon)_{exp} = 16.6(2.3) \times 10^{-4}$ (KTeV, NA48)
- Explained by SM?

Calculation with G-parity BC

USQCD AHM 2023 Masaaki Tomii (UConn)

Ground $\pi\pi$ final state can express on-shell kinematics

(Amplitudes: $A_I = \langle (\pi \pi)_I | H_W | K \rangle$)

 $(\omega = \operatorname{Re} A_2/\operatorname{Re} A_0)$

Independent calculations desired

- Phenomenological importance of ε'
- Relatively large uncertainty compared to exp
- Major sources of systematic errors
 - QED & IB corrections
 - Finite lattice spacing effects
 - Wilson coefficients

Why periodic BC?

- Already have lattice ensembles with physical pion mass • $a^{-1} = 1 \text{ GeV}, 24^3 \times 64 \text{ \& } a^{-1} = 1.4 \text{ GeV}, 32^3 \times 64 \text{ \& } \dots$

 - Continuum limit without new ensemble generation
- Hope to introduce QED/IB effects near future
 - Complicated with G-parity BC (violation of charge conservation)
 - Maybe possible with periodic BC
- Presence of $E_{\pi\pi} = 2m_{\pi}$ state challenging
 - Interesting to see feasibility of extracting signal of excited states

USQCD AHM 2023 Masaaki Tomii (UConn)

Setup

- 2+1 MDWF ensembles with physical m_{π} (RBC/UKQCD)
 - $a^{-1} = 1.02 \text{ GeV}, 24^3 \times 64$
 - $a^{-1} = 1.38 \text{ GeV}, 32^3 \times 64$
- GEVP to extract ME with excited ππ states
 - $O_{\pi}(\vec{p})O_{\pi}(-\vec{p})$ w various \vec{p}
 - O_{σ} : iso-singlet scalar operator for I = 0
 - also control higher-state contamination
- All-to-all propagator method
- AMA correction (exact calculation w fewer confs)

USQCD AHM 2023 Masaaki Tomii (UConn)

Achievements

ππ scattering
GEVP successfully worked
m_K close to 1st excited state
Phase shifts from Lüscher's method consistent with Roy equation

1.0

0.8

arXiv: 2301.09286 [hep-lat]

Effective energies (lattice units)

/ 11

Achievements

- $K \rightarrow \pi\pi$ amplitudes
- Interpolation to physical kinematics
- Paper to be on arXiv soon

USQCD AHM 2023 Masaaki Tomii (UConn)

Goal vs where we are

- - then only a few sources of systematic errors to be taken into account
- Measurements so far
 - 450 configs on 24³ done
- P

Precision performance and expect					
	24 ³ x 64	32 ³ x 64		24 ³ x 64	32 ³ x 64
N _{conf}	258	107	\rightarrow	450	500
Stat error on ReA ₀	22%	16%	\rightarrow	17%	7.4%
Stat error on ImA ₀	15%	16%	\rightarrow	11%	7.4%

might need some improvement to achieve 10% after continuum limit

Goal (for next allocation year): continuum limit of A_0 with < 10% stat error

• 250 configs on 32³ almost done \rightarrow 500 in the 23–24 allocation year

/ 11

Dominant source of stat error on ImA₀ $\Delta I = 1/2, a^3 M_{1.6}$ $(x10^{-2})$ -2 N = 4 w/o σ ⊢⊟ $N = 3 \text{ w/o } \sigma$ $N = 3 \le \sigma$ $N = 4 w \sigma$ -3 -4 Significant shift observed by **T**chosen introducing σ operator -7 -8 2 3 5 t^{min}/a

Introducing a KK sink operator in 23-24 alloc year

- very cheap to implement (we have saved needed meson fields)
- can take care of potential contamination from $< KK \mid Q_i \mid K >$
- give a few new types of diagrams

saved needed meson fields) nation from <KK | Q_i | K>

/ 11

NPR

- Significant dependence on intermediate renormalization scheme & scale found
 - RI-SMOM(q,q) vs RI-SMOM($\gamma_{\mu},\gamma_{\mu}$) schemes
 - $\mu \approx 1.48a^{-1} \rightarrow \text{big difference up to } 15\%$
 - $\mu \approx 1.28a^{-1} \rightarrow 3-4\%$, ok but
 - $(1.48/1.28)^2 \neq 15\% / 4\%$ is concerning
- Plan to calculate with a few more intermediate scales to better understand in 23–24 alloc year
- Code is ready

Summary

- Goal: continuum limit with $\leq 10\%$ stat error on A₀
 - More statistics: additional measurements on 32³ lattice to 500 confs
 - Better control of systematic errors NPR
 - Improvement ideas (KK sink operator, ...)
- Request at JLab
 - 37 M KNL core hours
 - Carry forward current 200 TB disk
 - Additional 530 TB on short-term tape