US Lattice Quantum Chromodynamics All Hands Meeting 2023

Non-perturbative RG β -function of 8-flavor SU(3) gauge theory

Curtis Taylor Peterson[†] (P.I.) in collaboration with Anna Hasenfratz [†]graduate student (CU Boulder)

Motivation: massless $N_f = 8$ & symmetric mass generation (SMG)

[Hasenfratz, A., Schaich, D., Veernala, A. JHEP 06 (2015) 143] *[LatKMI PRD 96, 014508 (2017)] *[LSD Collaboration PRD 99, 014509 (2019)] *[Appelquist, T., Ingoldby, J., Piai, M. PRD 126,191804 (2021)]

- SU(3) gauge-fermion system with 8 flavors popular BSM model
 - ➤ e.g., investigations by LatKMI*, LSD* and Appelquist et al.*

But that's not all...

- Evidence for chirally symmetric & confining phase (SMG)*
 - SU(3) gauge fields + 2 massless staggered fermions⁺
 - Even number of species needed to cancel Z₄'t Hooft anomaly*
 - Transition to SMG phase triggered by 4-fermion interaction?
 - May lead to chiral fermions

[†]2 Kähler-Dirac (8 continuum Dirac)

[Wang, J., Wen, X.-G. PRD 99, 111501 (2018)]
[Wang, J., You, Y.-Z. Symmetry 2022, 14, 1475]
*[Catterall, S. PRD 107, 014501 (2023)]
*[Hasenfratz, A. PRD 106, 014513 (2022)]

- > Bulk 1st-order phase transition at finite $\beta_b = 6/g_0^2$
- Triggered by strong UV fluctuations
- Pauli-Villars (PV) bosons suppress UV fluctuations
 - \succ Push phase transition to larger g_0^2
 - > Transition becomes continuous for stag. $N_f = 8$
- Finite-size scaling* suggests renormalization group (RG) β -function just touches zero

Simulation details

- nHYP-smeared staggered fermions & adjoint-plaquette gauge action
 - > Pauli-Villars (PV) improvement
 - Use MILC* & Quantum EXpressions* (QEX)
 - > Symmetric volumes (L/a = 32, 36, 40)
 - (Anti-"")periodic BC's for fermion(gauge)
 - > $8.8 \le \beta_b \equiv 6/g_0^2 \le 9.9$ (7 total)
- Gauge flows (GF) run with MILC & QEX
 - Run Wilson flow & modified rectangle flow*
 - Measure Wilson & clover operator

$$\begin{split} \mathcal{S}_{\text{rect.}} &= (1 - 8c_1)\mathcal{S}_{\text{Wils.}} + c_1\mathcal{S}_{\text{clov.}} \\ \text{e.g.,} \ c_1 &= -1/12 \rightarrow \text{"Symanzik flow"} \\ c_1 &= +1/12 \rightarrow \text{"C13 flow"} \end{split}$$

*[David Schaich's modified MILC code: github.com/daschaich/KS_nHYP_FA] *[QEX main branch: github.com/jcosborn/qex] *[Curtis Peterson's fork of QEX: github.com/ctpeterson/qex]

Continuous β -function method (CBFM)

[Fodor, Z., Holland, K., Kuti, J., Mondal, S., Nogradi, D., JHEP (2014) 018] *[Kuti, J., Fodor, Z., Holland, K., Wong, K. H. PoS, LATTICE2021 (2021) 321] *[Hasenfratz, A., Peterson, C.T., Witzel, O., van Sickle, J., arXiv:2303.00704, sub. to PRD]

- * Calculate GF β -function using the CBFM*
 - $L/a \rightarrow \infty$ extrapolation of $g_{GF}^2(t; g_0^2, L)$ and $\beta_{GF}(t; g_0^2, L)$ at fixed $t/a^2 \& \beta_b$ $a^2/t \rightarrow 0$ extrapolation of $\beta_{GF}(t; g_0^2)$ at fixed g_{GF}^2 1.
 - 2.

GF coupling and β -function in finite volume

$$g_{\rm GF}^2(t;L,g_0^2) \sim \left\langle t^2 E(t) \right\rangle^*$$
$$\beta_{\rm GF}(t;g_0^2,L) \equiv -t \frac{\mathrm{d}}{\mathrm{d}t} g_{\rm GF}^2(t;g_0^2,L)$$

*E(t) is the Yang-Mills energy density; we consider Wilson & clover "operators"

*[Hasenfratz, A., Schaich, D., Veernala, A. JHEP 06 (2015) 143] *[Artz, Harlander, Lange, Neumann, Prausa JHEP 06 (2019) 121]

Where we are

Raw data (no extrapolations) at each β_b (different colors) on $L/a = 32, 36, 40^{\dagger}$

Blue band is continuum prediction from old dataset*

Black lines are prediction from perturbation theory*

⁺(colored) dash = 32, dot = 36, dash-dot = 40

Continuum extrapolation $a^2/t \rightarrow 0$

Leading discretization effects*: $\beta_{\text{GF},\mathcal{O}}(t;g_0^2) \approx \beta_{\text{GF}}(t) + C_{\mathcal{O}}(a^2/t)^{\zeta},$ where $\zeta(g_{\text{GF}}^2) \rightarrow 1 \operatorname{as} g_{\text{GF}}^2 \rightarrow 0$

Determine $\beta_{\rm GF}(t)$ and ζ from joint fit to combinations of operators

 $^*\zeta$ = leading irrelevant exponent

Preliminary $N_f = 8$ continuum β -function

Weak coupling beginning to converge on old dataset.

Preliminary strong coupling showing signs of upward curvature in $g^2_{\rm GF}$

Summary & role of USQCD resources

*2 Kähler-Dirac (8 continuum Dirac) *May consider small volume simulations in SMG phase

Acknowledgements

U. Colorado: Alpine

USQCD: Fermilab LQ1

NSF Graduate Research Fellowship (GRFP)

curtis.peterson@colorado.edu github.com/ctpeterson curtistaylorpeterson.com

[Carosso, A., Hasenfratz, A., Neil, E. PRL 121, 201601 (2018)]

[Makino, H., Morikawa, O., Suzuki, H. PTEP 05, 099201 (2021)]

[Lüscher, M., JHEP 08 (2010) 71]

supplement

GF β -function

- GF describes a real-space RG transformation in infinite volume when combined with appropriately-defined coarse graining step
- Define a renormalized running coupling $(\mu^2 \propto 1/8t)$
 - Common choice in LGT studies is to use the flowed Yang-Mills energy density, since it does not renormalize*

$$g^2_{\rm GF}(t;g^2_0)\equiv \mathcal{N}\langle t^2 E(t)\rangle$$

> Describes flow along renormalized trajectory with corresponding β -function

$$\beta_{\rm GF}(t;g_0^2) = -t\frac{\mathrm{d}}{\mathrm{d}t}g_{\rm GF}^2(t;g_0^2)$$

 $^*\!\mathcal{N}=128\pi^2/3(N^2-1)$ chosen such that the GF coupling matches $\overline{\mathrm{MS}}$ at tree level

