



# User Support and Slurm User Accomodation for SubMIT

Chad Freer on behalf of the SubMIT team



## SubMIT



An MIT Physics Department analysis facility. → provide ecosystems to many research areas <u>https://submit.mit.edu</u>

subMIT system provides an interactive login pool + scale-out to batch resources

- $\circ~$  Home and Work directories
- SSH or Jupyterhub access
- Convenient software environment (CentOS7 native (moving to Alma Linux 9), docker/singularity images, conda)
- Local batch system with O(1000) cores, >50 GPU's 8 A30s and ~45 1080s (more being integrated)
- Local storage (1TB/user), 10's of TB for larger group datasets (gluster distributed file system with ~400TB of spinning disks)
- Fast networking: 100 Gbps ethernet
- Convenient access to larger external resources (OSG, CMS Tier-2 and Tier-3, LQCD Cluster, EAPS)
- $\circ~$  Strong focus on user support (ticketing system, AI-based chatbot in development)

# SubMIT Account Setup and Data Storage

# Шiī

#### **Creating Accounts:**

- 1. Anyone with MIT ID can set up an account by simply uploading ssh keys
  - a. MIT accounts possible for external people collaborating with MIT groups
- 2. Account gets automatically created with all of the user spaces and permissions.
- 3. Immediate access to all SubMIT machines as well as batch systems

#### User space:

- 1. 5 GB for User's Home  $\rightarrow$  /home/submit/<user>
- 2. 10 GB for User's Work  $\rightarrow$  /work/submit/<user>
- 3. 1 TB for User's Data  $\rightarrow$  /data/submit/<user>

#### NVME and additional space:

- 1. 30 TB of NVME scratch space for use by groups.
- 2. Additional Group space in /data as needed

#### T2 and Xrootd:

- 1. MIT T2 is mounted
- 2. XRootd access to typical CMS resources as well as group space on /data and T2
- 3. Boston XCache is available

# A Word More on Data Storage



## Additional Storage:

- 1. If a user needs additional space, the basic quotas can be expanded to match needs
- 2. Hadoop storage through the MIT T2 can also be provided with xrootd access

## Group Storage:

- 1. Provide storage with common access for all users within groups
- 2. Can be provided through /data with amount dependent on group's need
- 3. If fast access is required, access to scratch storage(NVME) can also be provided

## Xrootd:

- 1. /data has xrootd access
- 2. Allows access to data in Condor jobs where the mount is not available

# SubMIT User Usage Metrics

SubMIT now has over 300 users!

https://submit.mit.edu/?p=305

50-60 Unique users log onto SubMIT in a given week (Mostly from Physics)







# SubMIT User Usage Metrics Continued

#### Usage for SubMIT resources:

- 1. Users' tend to use CPU resources but there is still a healthy number of users interested in GPUs
- 2. Most users interested in CPUs are just doing interactive session work
- 3. Significant interest in using GPUs through batch computing systems!

#### Takeaways:

- 1. Users are taking advantage of multiple methods for working!
- 2. Significant work being done on GPUs
- 3. Need to maintain and support all options.



# **Batch Computing Systems**



## Batch Computing:

- 1. Computerized batch processing is a method of running software programs in batches automatically.
- 2. Users are required to submit the jobs, but no other interaction is required

## Slurm vs HTCondor:

## **1.** High Throughput or HTCondor:

- a. high-throughput computing software framework for coarse-grained distributed parallelization of computationally intensive tasks.
- b. It can be used to manage workload on a dedicated cluster of computers (No Common Mount points/filesystems)

## 2. Simple Linux Utility for Resource Management or Slurm:

- a. allocating access to resources (computer nodes) to users for some duration of time so they can perform work
- b. framework for parallel jobs such as Message Passing Interface (MPI) on a set of allocated nodes
- c. Home and other mount point available on all nodes



CMS Tier-3

Campus

## HTCondor on SubMIT

Connected to all resources on campus



# Batch computing and GPU access



## **HTCondor:**

- 1. Connections to MIT T2 (~25k cores) and T3 (~700 cores)
- 2. Additional connection to MIT Earth and Planetary Sciences (EAPS) cluster
- 3. External to MIT, we have connection to the CMS Global Pool and OSG

## Slurm:

- 1. O(2000) cores on SubMIT available for slurm jobs (more available through connection to CTP)
- 2. Dask setup through slurm cluster
  - a. Can be launched through terminal or jupyter
  - b. Conda environments can be used with Dask
- 3. O(50) GPUs made available through slurm
  - a. Can be used for batch jobs or for interactively through salloc
- 4. Jupyterhub uses slurmspawner so GPUs are available for Jupyterhub users
- 5. Includes a test partition for AlmaLinux9

# Slurm Partitions on SubMIT

- 1. Main partition ("submit"):
  - a. Main partition for SubMIT
  - b. O(2000) CPU cores available to users spread across 19 machines
- 2. GPU partition ("submit-gpu"):
  - a. Main submit GPU partition
  - b. 4 servers with 48 CPUs and 2 A30 GPUs each
- 3. Additional GPU resources ("submit-gpu1080"):
  - a. Secondary GPU partition
  - b. 12 servers with 24 CPUs and 4 1080 GPUs each
- 4. AlmaLinux test partition ("submit-alma9"):
  - a. Test partition for AlmaLinux
  - b. Currently only 2 new servers but will be expanded as we upgrade servers
    - i. Will continue to provide support for CentOS through singularity

# Monitoring on SubMIT



## 1. CondorMon and SlurmMon:

- a. Simple website showing a summary of the slurm jobs
- b. Shows total and individual user jobs
- c. rrd tools showing plot summaries for 2 hours, 1 day and 1 week
- d. Shows the usage split by computing center or slurm partition used

## 2. Ganglia:

- a. Monitor for all server machines in the SubMIT system
- b. Can Monitor CPU usage, Network, Memory, etc
- c. Useful for checking load on individual servers





## More on GPUs

GPU availability:

- a. Available only through slurm to avoid conflicts
- b. Can also be accessed for interactive use through salloc or through jupyterhub



## Software Availability

# Plii

#### Conda:

- 1. User encouraged to use conda
- 2. Conda environments will be available on all slurm nodes

#### CVMFS:

- 1. CVMFS is available
- 2. Additional MIT hosted CVMFS instance (available on SubMIT, T2 and T3)
- 3. Any package a user needs can be made available through this CVMFS instance
- 4. Singularity images hosted on cvmfs can be run directly
  - a. cmssw-slc6/cmssw-cc7/cmssw-el8/cmssw-el9 for CMS-maintained images suitable for CMSSW development
  - b. /cvmfs/unpacked.cern.ch is available for a range of other images
  - c. Additional images can be stored on MIT-hosted CVMFS instance

#### Docker:

1. Users have direct access to docker

# Jupyterhub and Environments

#### Jupyterhub Options and GPUs:

- 1. Jupyterhub uses Slurmspawner
- 2. Access to GPUs
- 3. Can use slurm reservations for large groups

#### **Connection with User's Conda environments:**

- 1. Jupyterhub loads the user's conda environments!
- 2. Central conda environments are also available
- 3. Provides a lot of flexibility for workflows

#### Dask:

- 1. Dask can be run through jupyterhub
- 2. Can access conda environment



# Slurm - Submit - 1 CPU, 500 MB Slurm - Submit - 2 CPUs, 1000 MB Slurm 802 reserved - Submit - 1 CPUs, 500 MB Slurm - Submit-GPU - 1 GPU Slurm - Submit-GPU - 1 GPU - /work/submit/(username)/ Slurm - Submit-GPU1080 - 1 GPU Local server - Submit01 - 1 CPU, 500 MB - /work/submit/(username)/ Local server - Submit01 - 1 CPU, 500 MB - /work/submit/(username)/

Select a job profile:



# SubMIT User Support



#### User's Guide:

- 1. Introduction to the SubMIT system and how to get your account set up
- 2. Guides for setting up environments and workflows
- 3. Several tutorials with examples on how to use batch computing, GPUs, Docker.

#### submit-help@mit.edu:

- 1. Email help-desk that connects you to the SubMIT team directly
- 2. Quick response time (Usually well within a few hours)
- 3. Willing to accommodate specific workflows/requests

#### Monitoring:

- 1. Monitoring tools available for all users
- 2. Monitors for the batch computing tools
- 3. Ganglia for server/network usage

# SubMIT User's Guide

#### Contents of the User's Guide:

- 1. Main section of the User's Guide designed to help users with getting started.
- 2. Describes resources (storage, software, batch systems, etc) available
- 3. Simple commands/scripts to help start work

#### **Tutorials:**

- 1. A few examples of workflows
- 2. We are willing to support more tutorials if requested!
- 3. More examples on github:

https://github.com/mit-submit/submit-examples

#### **Additional Sections :**

- 1. Future work: AlmaLinux testing partition
- 2. We are moving to AlmaLinux and have provided a slurm partition for users to test with

## User's Guide - subMIT

#### Contents:

- User's guide subMIT login pool
- Getting started
- Things that work and things that do not
- Available software
- Running interactively and batch jobs
- User quota and storage at submit
- Monitoring at submit
- GPU resources
- Data backup

## **Tutorials - subMIT**

#### Tutorials:

- Tutorial 1: Native System (python, Julia, matlab)
- Tutorial 2: Batch Job (HTCondor and Slurm)
- Tutorial 3: Containers (Docker and Singularity)
- Tutorial 4: Package Manager (Conda and Jupyterhub)
- Tutorial 5: GPU Example (submit-gpu and GPU batch options)



## **SubMIT User Metrics Continued**



What are the key features that are essential for you on subMIT?



# SubMIT Support Examples



## Request to add sage math to SubMIT (Wati Taylor) :

- 1. Requested an installation of sage math to be made available to use on a batch system:
- 2. <u>https://hub.docker.com/r/sagemath/sagemath</u>
- 3. Installed through docker and consistently had several hundred jobs running on slurm for weeks

## **Requested an installation of GAP (Xiao-Gang) :**

- 1. Requested an installation of GAP:
- 2. <u>https://hub.docker.com/r/gapsystem/gap-docker/</u>
- 3. Installed through docker and provided centrally through cvmfs.

## **Requested continuous access to a large number of GPUs (Simon Rothman) :**

- 1. Requested access to GPUs
- 2. Ran on ~50 GPUs through slurm for weeks
- 3. Simon is one of our consistent users and has given great feedback on the system!

## SubMIT Chat Bot



### SubMIT team is currently working on a chat bot:

- 1. Supplement the SubMIT help team (User support is time consuming)
- 2. Trained on the User's Guide and SubMIT documentation
- 3. Currently in the development stages! Will announce a prototype in the coming months

| Submit Chatbot (V0.1.0)                                                                                                                                                                                                    |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 🗊 Chatbot                                                                                                                                                                                                                  |  |
| How much storage space do I have on SubMIT?                                                                                                                                                                                |  |
| You have 5GB of storage space in your home directory (/home/submit/) and 50GB of storage space<br>in your work directory (/work/submit/). You also have 1TB of storage space in the storage<br>filesystem (/data/submit/). |  |

## Summary



SubMIT covers the entire MIT Physics Department and some others

- 1. Over 300 users with ~60 active users per week
- 2. Users have a wide variety of backgrounds and needs
- 3. Multiple active analyses that are closing in on publication as well as work for conferences

Access to resources through batch computing

- 1. Access to both Slurm and HTCondor (Slurm being the more popular option)
- 2. Access to various software through conda, CVMFS, docker, etc
- 3. Jupyterhub with access to your own conda environments

User feedback has been extremely helpful

- 1. help-desk is both essential and time consuming!
- 2. We have formed a users-group at SubMIT with monthly meetings and have plans for chatbot
- 3. No single answer for everyone

# SubMIT Support 802



### Conda environment made centrally:

- 1. Specific environment requested for 802 class
- 2. Environment ade available to users through jupyterhub (Students do not ever need ssh!)
- 3. Willing to reserve machines through slurm to support a large number of users
- 4. Can upload notebooks directly from github provided by 802 lecturers