Recent activities at CERN: test beams with ALPIDE telescope

What is a telescope and how does it work?

Several layers of reference planes equipped with a known sensor

- Reconstruct the particle trajectory using the references with known resolution
- Identify the "ideal" point of intersection with DUT
- Hit association on the DUT to estimate the DUT resolution and efficiency

Trigger/busy logic

Trigger coincidence (PMT1 AND PMT2):

logic end between the signals coming from the two PMTs

Trigger veto to mitigate pileup:

 accept a trigger only if no trigger input were received was received in a given time windows

Telescope setup

Telescope calibration, alignment and operation (summary)

Telescope installation at PS test-beam

- First "manual" alignment with a laser
- Connect power, connect to the PC
- Refine alignment with beam + eudaq hit display

Calibration of the PMTs

Gain and threshold adjustment

Optimization of the veto time

- Improve rate of data taking
- Reduce pile-up in the reference + DUT planes

Data analysis: primary goals

1) ALPIDE VCASN scans (internal threshold)

Data for range of VCASN values with vbb at 3V and 0V

2) ALPIDE data with vbb = 0V

 New data! ALPIDEs have not been characterized with this bias

3) Experiment and optimize process for MOSS test-beam

- Prepare for MOSS telescope
- Establish data collection and analysis pipeline

Overview of the data taking strategy₁₀₀

During Run: Checks with EUDAQ2

- Hit maps \rightarrow Is telescope aligned to beam?
- Correlations → Are DUT + references working together?
- Hits per event → Reasonable? Pileup issues?

After Run: Analysis with Corryvreckan

- Align DUT ALPIDE with reference ALPIDE
- Ensure usable tracks with data
- Residuals → Alignment between refs & DUT
- Clusters, cluster sizes → DUT performance, noise

Residual in global Y

Resolution in Y

Recent activities at CERN: first test beams with the MOSS!

Overview of the MOSS (Monolithic Stitched Sensor)

10 Repeated Sensor Units (RSU)

→2 Half-Units (HU) per RSU (top & bottom have diff. pitch) →4 Regions per HU (each with diff. transistors)

Test beam at the PS: plan and schedule

Timetable:

- PS test beam 5 19 July
- MOSS in beam since 14 July
- Just 5 weeks after the bonded MOSS arrived at CERN!

Beam configuration:

- T10@PS: 10 GeV negative hadrons
- both low-intensity and high-intensity runs

Goals of the test:

- Observe and characterize the very first signals in the MOSS
- Characterize efficiency and resolution as a function of tension VCASB (see next slide)

OSS ension VCASB **(see next slide**)

11

MOSS 'Word scan' vs VCASB → noise level

Number of words of the last event recorded by the online DAQ system (4 words = empty event) \rightarrow rough estimation of the noise level of the MOSS

VCASNB	Last event size (n. of words)		2000
36	~ 1000		
34	~ 400	(1)	1500
32	~ 100	Siz	
31	12	ut	
30	8	eve eve	1000
29	8	ste	
28	4	La	500
26	4		
24	4		0
22	4		20
20	4		

Region 2: Last event size vs. VCASB [without beam]

First correlation seen on ALPIDE(s)-MOSS! (with high-intensity beam)

X Correlation of MOSS 0 and ALPIDE 3

Region 2, VCASB=26

Correlation between the MOSS signal and the one in any of the ALPIDE reference planes:

 both ALPIDEs and MOSS are "seeing" the passage of the same particle trajectory

Data taking strategy and collected samples

Large datasets collected in low-intensity mode:

- Low-intensity runs \rightarrow collimators \pm 3.0 cm
 - Cleaner and higher-luminosity samples (milder trigger veto)
- 20k trigger events per VCASB level
 - ~1 MOSS hit per event
 - ~18k ALPIDE tracks per set \rightarrow ~10% through MOSS

good set

REGION	0	1	2	3
VCASB steps	[3,25] in steps of 2	[7,23] in steps of 2	[4,30] in steps of 2	_
Statistics	12 x 20k	9 x 20k	13 x 20k	_
Beam Intensity	low	high*	low	

*Different beam settings - data is not reliable

good set

14

MOSS analysis: masking noisy pixels

Apply frequency cut to automatically mask

- Pixel is masked if it satisfies:
 [#hits] ≥ [freq] x [avg. hits per event]
- Peak cluster size without cuts is at vcasb = 18
 - Much lower than expect, but...
- For frequency ≥ 50, peak shifts to vcasb = 26

• This is close to "manual scan" results!

	Manual	No Cut	Cut @ 50
Region 2	~26	18	24
Region 0	~16	13	13

MOSS analysis: alignment process

- Set MOSS at origin in Z
- Use ALPIDE 2 as "reference" (stays ~fixed, closest to MOSS)
- Time cuts with MOSS are set to 1e99 or turned off

Corryvreckan Steps

1. Masking

Mask with:

frequency_cut=-1

2. Prealignment

Broader settings:

max_rms=15mm

range_abs=20mm

3. Alignment 1

Excludes DUT,

aligns ALPIDEs only (Tracking4D & AlignementMillipede)

4. Alignment 2

Includes DUT, aligns MOSS with ALPIDEs (Tracking4D & AlignementMillipede)

No major changes

Two Alignment Steps

5. Analysis

MOSS_reg2_0: 2D correlation X (local)

Region 2: (Cluster size) vs VCASB

VCASB is inversely proportional to threshold

Why the peak?

- Associated cluster size increases as threshold decreases (charge on neighboring pixels)
- At a point, pixels become noisy and 1-pixel cluster noise dominates

MOSS Alignment: Region 2 Residuals

Summary and next steps

- Major contribution to the R&D, construction, installation and commissioning of the SVT innermost layers
- \rightarrow ITS3 as the technological baseline, but with a lot of additional challenges!
- Good plan from the near to the far future, with several aspects are still being optimized/finalized.
- \rightarrow any feedback/suggestion is very welcome
- Already delivering good results!
- \rightarrow Our CERN team is providing major contributions to the MOSS first test beam
- \rightarrow Ramping up the activities at Bates for the mechanical design and R&D
- \rightarrow A lot of opportunities for students and postdocs to have an impact on the project!

MIT will profit from a CERN-based laboratory to maximize the knowledge transfer from ALICEITS3 to ePIC SVT

BACKUP slides