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Abstract

Møller scattering is one of the most fundamental processes in QED. Its knowl-
edge at high precision is necessary for a variety of modern nuclear and particle
physics experiments. However, most treatments have neglected the electron
mass, which is an approximation that breaks down at relevant low energies. In
this thesis, existing soft-photon radiative corrections were combined with new
hard-photon bremsstrahlung calculations to take into account the effect of pho-
ton emission at any photon energy. The electron mass was included at all steps.
The radiative corrections were compiled into a Monto Carlo event generator.
To test the results, an experiment was designed, constructed, installed, and
executed at the MIT High Voltage Research Laboratory. Measurements are
reported, comparing the simulated radiative Møller spectra to data at 2.5 MeV.
Good agreement between the measurements and the new calculation is ob-
served in the momentum spectrum at three angles.

Thesis Supervisor: Richard G. Milner
Title: Professor of Physics
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Chapter 1

Introduction

Møller (electron-electron) scattering is a background in electron scattering
experiments, and is a purely QED process at low energies. It is theoretically
straightforward to calculate, and has been so for decades. However, a modern
retrospective has revealed gaps in previous treatments, particularly the omis-
sion of the electron mass in the radiative corrections. This thesis documents
the effort to address these issues, and to verify the solution with data. A re-
calculation of radiative Møller scattering will be presented, as will a description
of the effort to measure it.

1.1 Low Energy Electron Scattering

Electron scattering has been an active area of study since the 1940s. Some of
the first experiments were performed using a Van de Graaff accelerator at MIT;
for example, those of Buechner, Van de Graaff, and Feshbach ([1], and also [2],
[3]). These experiments measured electron nucleus scattering, typically using
ionization chambers. One of the first results was the validation of the Mott
cross-section.

Today, we are revisiting these experiments in both scope and in actual
location. However, we have approached the problem with modern detector
and simulation technology in order to take a more precise look. In particular,
however, our focus is on Møller (electron-electron) scattering. This is perhaps
the most fundamental process in QED, and is one of the first calculations per-
formed by students learning the trade. It is thus a natural place to start a series
of measurements.
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p2 (�)

p1 (e)

p4 (�)

p3 (e)

Figure 1-1: Leading-order electron-muon Feynman diagram.

1.1.1 Electron-Nucleus Scattering

Mott scattering is one of the most basic relativistic scattering processes, in
which an electron scatters off a spin-zero nucleus whose recoil can be ignored.
At low energies, this is a reasonable approximation. As reported in the 1947
paper by Buechner, et. al. [1], this can be described as

d�

d�
=
�

Ze2

2mc2

�2 1 – ˇ2

ˇ4 csc4 �

2

�
1 – ˇ2 sin2 �

2
+

Z�ˇ

137
cos2 �

2
sin

�

2

�
. (1.1)

Here, Z is the atomic number of the target and ˇ is the velocity of the incoming
electron. In some sources, the higher-order terms in the brackets are omitted.
This formula is valid for low Z and relatively low electron energies, and was
validated to within roughly 10% below the 2 MeV level [1].

A natural next step towards understanding electron-nucleus (and electron-
proton) scattering is to consider electron-muon scattering. This can be treated
in the context of quantum field theory similarly to electron-proton scattering,
except with an exact point-like coupling. This section closely follows a review
by F. E. Close [4].

First, it is important to note that cross-sections are comprised of a Lorentz-
invariantmatrix-element |M|2 and a phase-space factor. In particular for 2 ! 2
scattering:

d� =
1

|v1 – v2|
1

2E1 2E2
|M|2

d3p3

(2�)32E3

d3p4

(2�)32E4
(2�)4ı(4)(p1+p2–p3–p4). (1.2)

Here, the Ei and vi are the energies and velocities of the particles. The matrix
element can then be calculated by considering the Feynman diagram (Fig. 1-1):

h|M|2i =
1
4

X
˙s

ˇ̌̌̌
u(p3)�u(p1)

e2

q2 u(p4)�u(p2)
ˇ̌̌̌2

(1.3)
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Figure 1-2: Leading-order electron-proton Feynman diagram.

where the sum (and angle brackets) indicate that we average over incoming
spins and sum over outgoing spins. With the simplificationX

˙s

u˛(p)uˇ (p) = (/p + m)˛ˇ , (1.4)

this can be written as

|M|2 =
e4

q4 L(e)
��

L��
(�) (1.5)

with the electron tensor

L(e)
��

=
1
2
Tr(/p3 + me)�(/p1 + me)� (1.6)

and the muon tensor

L��
(�) =

1
2
Tr(/p4 + m�)�(/p2 + m�)� . (1.7)

Evaluating this completely yields the electron-muon cross-section:

d�

d�
=
�

d�

d�

�
Mott

E3

E1

 
1 +

Q2

2m2
�

sin2 �

2

!
. (1.8)

This cross-section has been decomposed into three parts: the Mott cross-
section, a recoil term E3/E1, and a spin term (in parentheses).

The electron-muon cross-section is an ideal starting point for considering
electron-proton scattering (Fig. 1-2). Hofstadter, et. al. famously measured
deviation from point-like theory, suggesting the presence of internal structure
[5]. We can begin by writing the matrix element as

h|M|2i =
e4

q4 L(e)
��

L��
(p) (1.9)

with L(e)
��

unchanged, and
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L��
(p) =

1
2
Tr(/p4 + mp)��(/p2 + mp)�� . (1.10)

Here, the coupling �� replaces � as a way to include the proton’s structure:

��
� �F1(q2) +

�F2(q2)
2mp

i��˛q˛ (1.11)

where F1 and F2 are the Dirac and Pauli form factors, respectively, and � is the
proton’s anomalous magnetic moment. Combining these yields the electron-
proton cross-section:

d�

d�
=
�

d�

d�

�
Mott

E3

E1

" 
F2

1 +
�2Q2

4m2
p

F2
2

!
+

Q2

2m2
p
(F1 + �F2)2 tan2 �

2

#
. (1.12)

When F1 = 1 and F2 = 0, the electron-muon result is recovered.
More typically, the electron-proton cross-section is expressed in terms of

the Sachs electric and magnetic form factors:

GE � F1 –
�Q2

4m2
p
F2

GM � F1 + �F2

(1.13)

such that the cross-section becomes the well-known Rosenbluth formula:

d�

d�
=

˛2

4E2
1 sin4 �/2

cos2 �

2
E3

E1

�
G2

E + �G2
M

1 + �
+ 2�G2

M tan2 �

2

�
(1.14)

with � = Q2/4m2
p [6]. This formula can be reduced to that for a spin-zero point-

like nucleus by letting mp ! mN , GE ! Z, and GM ! 0, recovering essentially
the same result as the Mott formula at very low energies.

1.1.2 Møller Scattering

The calculation ofMøller scattering is quite similar to electron-muon scattering,
except there are now two diagrams to be considered (Fig. 1-3). Solving these
yields the spin-averaged matrix element:
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Figure 1-3: Leading-order Feynman diagrams for Møller scattering.
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Here, s, t, and u are the usual Mandelstam variables. To produce a cross-section,
this is combined with the scattering phase space. When expressed for identical
particles in the center-of-mass frame, this takes the simple form:

d�

d�
=

h|M|2i

128�2s
(1.16)

where � refers to the solid-angle of a particular final-state electron. For many
purposes, it is sufficient to stop here. Experiments measuring parity-violating
Møller scattering, for example MØLLER [7] and E158 [8], are often interested
in spin-dependent asymmetries in this cross-section, rather than the exact
value. However, other experiments require a more precise understanding of
Møller scattering, and for this, radiative corrections are necessary.

1.2 Experimental Motivation

This research began with an analysis of the physics processes occurring in the
proposed DarkLight experiment. DarkLight aims to search for a new massive
boson, the A0, by precisely measuring the process e p ! e p e+e–. This involves
scattering a high-intensity 100 MeV electron beam off a gaseous hydrogen
target.

Møller scattering, owing to its large cross-section, is the highest-rate pro-
cess occurring in the DarkLight detector. As a result, it is the dominant source
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Figure 1-4: Schematic of the DarkLight experiment, showing the Møller
envelope (the largest radius to which Møller electrons can bend within
the solenoidal field).

of uncorrelated background. The DarkLight detector was designed to include
a 0.5 T solenoid, whose purpose would not only provide momentum resolution,
but focus the Møllers forward and out of the acceptance (Fig. 1-4). However,
backgrounds still proved significant: as can be seen in Fig. 1-5, the Møllers exit
the solenoid, defocus, and backscatter upon hitting the carbon dump. To better
characterize the backgrounds, a radiative Møller generator was desired. This
would help quantify the effects of not just electrons and their backgrounds, but
prompt photons from internal bremsstrahlung.

Concurrently with DarkLight design process, data analysis of the OLYM-
PUS experiment was underway. The OLYMPUS experiment aimed to measure
the ratio of positron-proton to electron-proton elastic scattering cross-sections
in the effort to quantify the contribution of two-photon exchange. OLYMPUS
acquired data with 2 GeV alternating electron and positron beams incident
on a hydrogen target [9] at the DORIS storage ring at DESY. Møller/Bhabha
calorimeters placed at the symmetric angle (90°CM = 1.29°lab) were intended as
one of the luminosity monitors. Precise luminosity monitoring was important
to normalize the separate electron and positron datasets and form the cross-
section ratio. Since electron-electron and positron-electron scattering were
the only processes in the experiment that are fully described by QED, they were
the most suitable choices for normalization. A precise treatment of both Møller
and Bhabha scattering, with equivalent theoretical methods, was thus desired.

As a result, it was decided to pursue the development of a Monte Carlo event
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Figure 1-5: Geant4 simulation of Møller electrons in the DarkLight ex-
periment. (J. Balewski)

generator for both Møller and Bhabha scattering, backed by calculations of
the NLO radiative corrections and full bremsstrahlung. Generators existed for
each, butwithdifferent underlying theoreticalmethods, rendering themuseless
as tools for precision relative normalization. In addition, it was discovered
that most radiative corrections have historically neglected the electron mass.
This is a prudent approximation for high-energy scattering experiments, but it
catastrophically breaks down at DarkLight-scale energies.

The missing piece in the preparation of the generator was the complete,
first-order bremsstrahlung for both processes. It became necessary to calculate
this. After reevaluating the radiative Møller spectrum with the electron mass
[10], we discovered a lack of data in the low-energy regions with which to
compare our results. A plan was then developed to directly measure radiative
Møller scattering in order to verify our work in this region, where the electron
mass is important. The experiment eventually was installed at the Van de Graaff
accelerator of the MIT High Voltage Research Laboratory (HVRL).
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Chapter 2

Radiative Corrections and the Event
Generator

The OLYMPUS and DarkLight experiments demanded an improved under-
standing of Møller scattering, but in seemingly different regions of physics. The
DarkLight design process required an understanding of the radiative photons:
the Møller bremsstrahlung. The OLYMPUS analysis required a precise knowl-
edge of the cross-sections, i.e. NLO loop-level and radiative effects. However,
these processes are inextricably tied: one cannot be considered without the
other.

The following sections closely trace our paper [10].

2.1 Approach to the Radiative Corrections

In modern experiments, a Monte Carlo approach is the preferred method
of treating the radiative corrections. This approach stands in contrast with
traditional soft-photon radiative corrections, which are typically included as a
multiplicative factor to the Born cross section:

d�

d�

ˇ̌̌̌
soft

= (1 + ı)
d�

d�

ˇ̌̌̌
Born

(2.1)

with ı = ı(�E, �). This traditional method requires defining a cut-off �E:
the maximum amount of energy a photon can carry away for which the event
passes acceptance cuts. For an experiment having spectrometers with small,
well-defined energy and angular acceptances, this formulation of the radiative
corrections can be applied easily. However, for experiments with irregular
acceptances, energy resolutions that may have a complex dependence on an-
gle, or coincidence measurements, it is not feasible to quantify the radiative
corrections solely by � and �E. An effective way to convolve the effects of radi-
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ation with these constraints is to perform Monte Carlo simulation. There have
already been Monte Carlo implementations of the radiative corrections such
as MERADGEN (for Møller) [11] and BabaYaga@NLO (for Bhabha) [12, 13],
but the two use different formalisms and we require a consistent treatment.
Further, neither of these are flexible enough to meet the needs of OLYMPUS
or DarkLight.

Previous radiative corrections to Møller and Bhabha scattering in the tradi-
tional approach [14, 15, 16, 17] have often made use of ultra-relativistic ap-
proximations in which the electron mass is assumed to be negligible rela-
tive to the momentum transfer. While this is sufficient for OLYMPUS where
Q2 � 103 (MeV/c)2 at the symmetric angle, it will not work for DarkLight. For
the majority of the scattering solid-angle, the approximation m2

e � Q2 does
not hold, and the traditional soft-photon radiative corrections exhibit not only
inaccurate, but unphysical behavior. Figure 2-1 illustrates this: a proper radia-
tive correction factor ı(�E, �) should decrease as �E decreases, indicating the
obvious conclusion that fewer events are expected in a smaller energy window.

However, when the electron mass is neglected in a region where it is im-
portant, this behavior flips: the radiative corrections increase with decreasing
�E. This is unphysical and is one of the primary motivations for this work,
which is required if we are to have any reliable analysis at DarkLight-scale
energies. In particular, for DarkLight, m2

e/t > 0.1 outside the lab-frame region
of 0.93°–31.98°, and the flip occurs at approximately 10° in the center-of-mass
(CM) frame, which excludes the area outside approximately 0.5°–49° in the
lab frame. Since for DarkLight we are interested in electrons at both very small
and large angles, it is clearly crucial to include the electron mass. Nearly all
existing formulations were intended for high energy scattering (e.g. [14, 17]),
and only recently has there been attention to including the electron mass.

In a paper by N. Kaiser [18], the radiative corrections for soft-photon emis-
sion in both Møller and Bhabha scattering were performed in a consistent
approach and without ultra-relativistic approximations. There has also been
an additional recent treatment of the radiative corrections to Møller scattering
beyond the ultra-relativistic limit [19]; however, we do not use it as there is no
matching formulation for Bhabha scattering. In this work, we have extended
the results of Kaiser with exact single hard-photon bremsstrahlung calculations.
Since the energies of interest are quite low, only QED interactions have been
included. The calculations, containing no ultra-relativistic approximations,
permit a complete analysis of the next-to-leading-order radiative corrections
for both Møller and Bhabha scattering in the low energy regions of interest.
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Figure 2-1: Comparison of the Møller radiative correction term, ı, for a
100 MeV DarkLight beam at 5° in the CM frame for different electron
masses. With me = 0 (Tsai [14]), the downward-sloping behavior is
unphysical; this is fixed when the electron mass is taken into account
(Kaiser [18]).
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Figure 2-2: The Møller radiative correction term from Tsai [14], in the
CM frame at an energy corresponding to a 100 MeV lab-frame beam.
Note the unphysical change in sign of the slope.
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Figure 2-3: The Møller radiative correction term from Kaiser [18], in the
CM frame at an energy corresponding to a 100 MeV lab-frame beam. The
inclusion of the electron mass has eliminated the unphysical change in
sign of the slope.

2.2 Treatment of the Radiative Corrections

Our treatment of the radiative corrections is to divide the events into two
categories corresponding to the emissionof photonswith energy aboveor below
a cutoff, �E, that separates the “soft” and “hard” regimes. In the soft regime,
the events are described by elastic electron-electron kinematics with a cross-
section that has been adjusted for the effects of soft-photon emission (Eq. 2.1).
In the hard regime, they are described by single-photon bremsstrahlung events.
The inclusion of both of these calculations allows the effects of photons of

Figure 2-4: Feynman diagrams for radiative Møller scattering.
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Figure 2-5: Feynman diagrams for radiative Bhabha scattering.

Figure 2-6: Single-loop Feynman diagrams for Møller scattering.

Figure 2-7: Single-loop Feynman diagrams for Bhabha scattering.
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any energy to be considered. The calculations have been formulated in the
center-of-mass frame to take advantage of the many kinematic simplifications.

2.2.1 Elastic Events with Soft-Photon Radiative Corrections

Events with photons below the �E threshold are described with elastic kine-
matics and a cross-section that has been adjusted from Born as in Eq. (2.1). The
Born cross-section in the center-of-mass frame is given by

d�

d�3

ˇ̌̌̌
Born

=
Sh|M|2i

64�2s
(2.2)

with the tree-level matrix element for Møller scattering reported earlier in
Eq. (1.15). Again here, s, t, and u are the usual Mandelstam variables and �3

refers to the solid-angle of a particular final-state lepton. The quantity S is
a symmetry factor typically equal to

Q
j 1/nj! for each n final-state identical

particles of type j1. The matrix element for Bhabha scattering can easily be
obtained from crossing symmetry by substituting s $ u.

Kaiser’s derivation of the ı radiative correction terms is presented in [18].
To produce these corrections, the cross-section for soft-photon emission is first
integrated over all photon directions and energies up to �E. The result of this
is expressed as a correction to the Born cross section; it is, however, infrared-
divergent. An additional correction describing the interference between the
tree-level and one-loop diagrams (Figs. 2-6, 2-7), however, contains an opposite
infrared divergence [18]. Including both corrections thus produces a finite ı

that can be used as in Eq. (2.1).
Equations (22) and (24) in [18] provide the terms corresponding to soft-

photon emission in Møller and Bhabha scattering, respectively. While these
terms contain the necessary cancellation of infrared divergences, they are
incomplete because they do not describe the entirety of the effects from the
one-loop diagrams. As the text indicates, additional terms must be included
to achieve a complete description [18]. This remaining part of the radiative
correction is provided by summing the remaining finite loop-level interference
terms and dividing them by the Born terms (i.e. second line of Kaiser’s equation
(2) divided by the first). The expressions needed to compute this are printed in
full for Møller scattering, but the corresponding Bhabha expressions can easily
be obtained by the substitution s $ u. The addition of these (�E-independent)
loop-level terms to the soft-photon expressions completes the description

1For real experiments measuring Møller scattering, care must be taken to properly account
for both final-state electrons. When integrating over a non-trivial �3 region, the symmetry
factorS may become a complicated function, especially for events with hard photons. See §2.4.3.
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of the ı radiative correction factors for both Møller and Bhabha scattering.
We also note that we have included the terms containing both electronic and
muonic vacuum polarization, although the latter is negligible at the energies
we are considering.

One should note that as �E approaches zero, the soft-photon radiative
corrections diverge to negative infinity. This results from neglecting the effects
of multiple soft-photon emission. The effect of multiple soft photons can be
taken into account to all orders by exponentiating the correction term (1 + ı !

eı) [20]. However, since we consider only single hard-photon bremsstrahlung,
this would give the total cross-section an artificial dependence on �E; as a
result, the exponentiation is not used. Our approach is self-consistent as long
as �E is chosen to be large enough that the correction term remains small, but
not so large that the soft-photon approximation becomes invalid. Later, some
results will be shown with �E = 10–4p

s, as it fulfills both of these conditions.
We note that while we do not consider them, higher-order and multiple-

photon effects may not be negligible whenO(0.1%) absolute accuracy is desired.
In the case of DarkLight, the single-photon model is sufficiently precise, as
we are largely interested in the noise created by the interaction of Møller elec-
trons/photons with the detector elements. For OLYMPUS, it is more important
that the Møller and Bhabha processes be treated on equal footing, since the
relevant quantity is the ratio of the cross-sections rather than the absolute
value. The framework used here is not easily scalable to include higher-order
effects and multiple photons in a precise manner. A different approach, such
as a QED Parton Shower algorithm like that used in BabaYaga [12, 13], is better
suited to analyzing multiple-photon events; however, neither method is perfect
and both do require some level of approximation.

2.2.2 Hard Bremsstrahlung Events

Events with photons having energy greater than �E are described by an exact
tree-level single-photon bremsstrahlung calculation. The spin-averaged matrix
elements for

e–
1 + e–

2 ! e–
3 + e–

4 + 

and
e+
1 + e–

2 ! e+
3 + e–

4 +  ,

as diagrammed in figures 2-4 and 2-5, were calculated exactly using the Mathe-
matica plugins FeynArts and FormCalc [21]. No ultra-relativistic, soft-photon,
or peaking approximations were made.

In formulating the center-of-mass phase-space parametrization for 2 ! 3
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body ee ! ee scattering, we follow the approach of [22]. Combined with the
matrix elements, the bremsstrahlung cross-section is then given by:

d5�

dE d� d�3
=

S
32m2(2�)5

E

2Ep#

X
�

p2
3�h|M|2i (2.3)

with

# =
1
m

q
4E2(E – E )2/m2 – (2E – E )2 + E2

 cos2 ˛, (2.4)

where ˛ is the angle between lepton 3 and the photon, E and p are the center-
of-mass frame energy/momentum of either initial-state particle, and m is the
electron mass.

The energy of lepton 3 is then given by [22]:

E3 =
2E(E – E )(2E – E ) � m2E# cos ˛

(2E – E )2 – E2
 cos2 ˛

. (2.5)

If the photon energy is below

E0 = 2E(E – m)/(2E – m), (2.6)

then only the upper sign in Eq. (2.5) is allowed. If it is above E0 , both are
allowed, and there is an additional constraint that

cos ˛ < –
1

E

q
(2E – E )2 – 4E2(E – E )2/m2. (2.7)

The summation in Eq. (2.3) indicates that both possible values, i.e. both signs
in Eq. (2.5) should be included in the case that E > E0 where both are valid.
This cutoff, E0 , is purely an artifact of this choice of variables; however, these
variables are necessary in order to properly match the soft-photon and hard-
photon parts of the cross-section, by defining hard photons as those with E >
�E. We also note that the highest possible photon energy is equal to

Emax = p2/E = E – m2/E, (2.8)

which occurs when the two outgoing leptons are emitted collinearly opposite
the photon, each carrying half its momentum.

2.3 Results of the Calculation

In the following section, we present some results at a center-of-mass energy
of

p
s = 45.3 MeV, corresponding to OLYMPUS kinematics of a 2.01 GeV beam
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Figure 2-8: Cross-sections for hard bremsstrahlung (thick lines) com-
pared with soft-photon corrections (thin lines [18]) at various center-of-
mass frame lepton angles for Møller and Bhabha Scattering, for the range
� < E < E0 .
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Figure 2-9: Ratio of hard bremsstrahlung (Eq. 2.10) to the soft-photon
corrections (Eq. 2.9). The agreement as E ! � indicates the
bremsstrahlung behaves as expected. Deviations from unity are expected
as the soft-photon approximation breaks down.
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Figure 2-10: Bremsstrahlung cross-section at various center-of-mass
frame lepton angles for Møller and Bhabha Scattering, plotted at the
highest-allowable photon energies.
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Figure 2-11: This work (line) compared with BabaYaga@NLO at order
alpha (boxes), for detecting an electron at 90° in the CM frame, as a func-
tion of photon energy. Box height (not visible at lower photon energies)
indicates statistical Monte Carlo error.

incident on a fixed target. These results have been calculated with �E =
10–4p

s � 4.5 keV; we will refer to this particular cut-off value as � . In Fig. 2-8,
a comparison between the hard-photon bremsstrahlung cross-section and the
soft-photon-corrected cross-section is presented at three specific lepton angles
for � < E < E0 . The bremsstrahlung cross-section has been numerically
integrated over all photon directions, and is plotted as a function of photon
energy. The soft-photon-corrected cross section has been differentiated with
respect to �E to obtain a cross-section as a function of photon energy. This
formulation produces two quantities that can be directly compared:

Soft:
d3�

d�3 dE
=

d
d�E

�
ı(�3, �E)

�
�

d�

d�3

ˇ̌̌̌
Born

(2.9)

Hard:
d3�

d�3 dE
=
Z

4�

d5�

d�3 dE d�
d� . (2.10)

These Møller (Bhabha) cross-sections represent the probability for detecting
an electron (positron) at the specified angle as a function of the energy of the
emitted photon. At low photon energies, the close agreement is a validation of
our code and is a reflection that the calculations properly reduce to existing
soft-photon calculations at E = � . Figure 2-9 shows a ratio of these quantities;
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here, the agreement can be clearly seen by the ratio becoming unity as E ! � .
The soft-photon cross-section (Eq. 2.9) has been plotted to photon ener-

gies that are clearly outside its range of validity in order to demonstrate its
limitations. At these higher photon energies, a relative rise of the hard-photon
bremsstrahlung cross-section is seen, corresponding to an increase of the cross-
section resulting from initial-state radiation. Figure 2-10 shows the hard cross-
sections plotted at the highest photon energies. We also note that the Møller
cross-sections presented in figures 2-8(a) and 2-10(a) are that for detecting any
electron, and may exceed other formulations by a factor of two.

In many of these plots, features such as kinks and cusps are visible, espe-
cially in the region where E > E0 . However, we note that in this scenario with
a very high-energy photon, final-state leptons are emitted nearly collinearly (in
the CM frame), and in this region the single-photon bremsstrahlung model may
break down. Contributions from multiple-photon exchange/emission, final-
state interactions, and atomic effects may become important in this regime.
We are able to reproduce these features for the Møller case with the matrix
element presented in [22]. In addition, excellent agreement with the widely-
used code BabaYaga@NLO [13] (which includes the electron mass) is observed
when run at order alpha (NLO). Figure 2-11 shows a comparison between our
work and BabaYaga, in which the interesting features line up precisely. There
is an approximately 1% deviation between our work and BabaYaga in the mid-
photon-energy region (�12 MeV), but this is only at the lowest point of the
cross-section, and likewise it contributes negligibly to the total cross-section.
This may result from approaching the same physics with contrasting methods.

It should be noted that the bremsstrahlung cross-section described in these
plots is divergent: it becomes infinite as the photon energy tends towards
zero, motivating the plots beginning at E = � . This illustrates the necessity
of combining the bremsstrahlung calculation with soft-photon corrections,
which account for effects in the region where 0 < E < �E. The parameter �E
sets the point at which the transition from the soft-photon corrections to full
bremsstrahlung is made.

2.4 Description of the Generator

A Monte Carlo event generator was developed, based on the new calculations
of Møller and Bhabha scattering. It is written in C++ using ROOT classes, and
is designed for integration with existing Geant4 simulations. It can be used
as a standalone event-generating executable or as a class framework that can
be included in existing software. The generator performs all calculations in
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the center-of-mass system. This avoids a number of kinematic complications
that arise in the lab frame. However, it can easily provide properly-boosted lab
frame vectors.

2.4.1 Considerations for Weighted Event Generation

The generator operates using weights: kinematic configurations are drawn
randomly from pre-specified distributions, and are importance-weighted to
represent the cross-section for such kinematics. An event’s weight W is given
by

W =
dn�

d E�n

�
E�n
� ı

P
�

E�n
�
, (2.11)

where E�n represents the n independent parameters of the differential cross-
section. The numerator is the differential cross-section for such parameters,
and the denominator represents the probability of drawing them from the
distributions.

Using weights allows analysis of all regions of phase-space with satisfac-
tory statistical precision. For highly non-uniform distributions, such as cross-
sections that are peaked in the forward direction, it can be difficult to produce a
sufficient statistical analysis at all angles with an unweighted generator because
far more events will be generated in the peaking regions. A weighted generator
allows a more even coverage of the phase space, but the calculation of the
statistical error is more complex. For weights that are similar in magnitude,
the variance of the sum of the weights is well-approximated by the sum of the
squared weights. However, the summation may be slow to converge on the
correct value if the weights vary significantly within a bin. For this reason, it is
important to draw event kinematics from a distribution that leads to each bin
in the analysis receiving events with similar weight. This is strongly dependent
on the specific analysis: we find that for our purposes, uniform sampling of the
lepton angles provides even coverage with satisfactory convergence. However,
the statistical error is significantly reduced by prior sampling of the photon
angular and energy distributions.

First, an ultimately unsuccessful method was developed for rapid numerical
sampling of the photon direction. This was based on sampling both the photon
� and � over a small number of points (10–20 each), and performing trapezoidal
integration to arrive at a cumulative distribution function for inversion sam-
pling. An associated weight was assigned to make up the difference between
the approximate trapezoidal function and the actual cross-section. The initial
computation phase was quite short (�1 minute), and subsequent drawing from
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the computed distributions was not significantly slower than uniform sampling.
An array of such 2D sampling objects was created at generator initialization,
one for each of a set of possible photon energies and lepton angles, and the
appropriate one was accessed during generation. The result was a significant
reduction in the variance of the weights without a significant slowdown.

However, this method was ultimately unsuccessful when applied to a broad
range of kinematics. Inversion sampling relies on the ability to calculate a
cumulative distribution function, and then invert it. This failed when the
difference between the lowest and highest points in the cross-section exceeded
double precision. As a result, an accurate cumulative distribution function
could not be calculated, because a large number of points were not contributing
to the total cross-section. This caused inaccurate event generation.

Ultimately, an adaptive Monte Carlo algorithm, known as “foam” integra-
tion, was adopted. The implementation was provided with the ROOT package
as the TFoam class, and is based on [23]. This method works by dividing up
the cross-section into an adaptively-shaped grid of cells having approximately
the same integral. A cell is chosen, and then rejection sampling is performed
within it. This circumvents the issue of numerical precision, and is much
more efficient than standard rejection sampling. Additionally, the particular
implementation allows functions of any dimension to be sampled.

In the end, it was decided the best option was to create an array of TFoam
objects, spread evenly across electron angles. Once an electron angle was
chosen (uniformly), the nearest TFoam was used to draw the photon energy
and angles. This allowed us to keep sampling the electron angle uniformly,
while using the TFoam integrators to choose an associated, lightly-weighted
set of photon kinematics.

2.4.2 Notes on Running the Generator

In standalone mode, the generator can be completely controlled via the com-
mand line and outputs events in either tab-delimited-text or ROOT TNtuple
format. All random numbers used in event generation originate from a single
instance of a custom random number generator class that is then provided to
the generator upon instantiation. This class must be implemented by the user
as derived from the base RandGen class. In the standalone generator, an imple-
mentation is provided which draws random numbers from a ROOT TRandom3
instance.

Additionally, the user must specify the generator mode (Møller or Bhabha),
the center-of-mass � and � cuts on the primary final-state lepton, and any
desired modification from the default �E. The number of cells in the TFoams
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Figure 2-12: Three possible kinematic scenarios for Møller events (CM
frame with incoming beams).

in which the photon angles/energies are sampled can also be specified, as well
as the number of times this is performed along the range of lepton angles.

Upon generating an event, either two or three instances of TLorentzVector
are calculated, corresponding to elastic or bremsstrahlung events. Pointers
to the TLorentzVector instances are returned via associated class methods.
The user can determine which type the event was by calling GetElasticFlag()
which returns 1 if the event was radiative, and 0 if elastic.

2.4.3 Proper Counting of Møller Electrons

The Møller and Bhabha cross-sections are defined for a particular final state
lepton to scatter into ��. In this event generator, �� is the center-of-mass �

and � region specified by the user. For Møller scattering, there is an ambiguity
over which electron is chosen, since it is impossible to assign which electron
was scattered and which recoiled. As a result, to obtain the physical cross-
section for all electrons scattering into ��, the differential cross-section must
be integrated over both the region of interest, and the complementary space
for which the second electron enters this region. For events with two-body
elastic kinematics, this is a simple task, since the complementary region is easy
to define.

However, for radiative events with inelastic kinematics, the problem is
somewhat more subtle. Since a photon can carry away energy and momentum,
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Figure 2-13: The event generation decision tree.

the complementary region is no longer simply defined (Fig. 2-12). Regardless of
the choice of angular region over which the solid angle of the primary electron
is integrated, there may be improper counting. If the secondary electron falls
into this region as well, a corresponding kinematic configuration in which in
the the electrons are swapped will be counted, leading to correct integration
over both the primary and complementary regions. However, there may also be
events where the secondary electron is emitted outside of the region of interest,
and thus the swapped configuration will not be counted.

As a result, events for which only one electron enters the region of interest
require an additional factor of two relative to those for which both electrons do.
The generator automatically checks each Møller event for such a redundancy
and adjusts the weight accordingly. The result is that the generator’s output
will represent the cross-section for all events for which at least one electron
falls into the angular region of interest.

2.5 Event Generation Algorithm

The generation algorithm decision tree can be seen in Fig. 2-13. When an event
is requested by Generate_Event(), a random number is drawn to determine
if it is “radiative” (hard-photon) or “elastic” (soft-photon). If the event is
elastic, kinematics are drawn and the final-state vectors returned. If the event
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is radiative, the process is more complex. As described in §2.2.2, there is a
photon cutoff value above which two photon energies are valid, and there
is a restriction on their solid angle. In the “simple” case below this cutoff,
the kinematics are drawn from the relevant TFoam instance, and the vectors
returned. In themore complicated case, one of the possible energies is chosen at
random, and the phase-space re-weighted first to reflect the restricted angular
range, and then by a factor of two for the energy ambiguity.

2.6 Radiative Pair Annihilation Generator

Notably, the scattering of low-energy positrons off atomic electrons allows an
additional final-state: annihilation to two or more photons. This process is
important to OLYMPUS since the Møller/Bhabha calorimeters cannot distin-
guish electrons, positrons, and photons. A generator was developed for this
process using a similar framework to that of the Møller/Bhabha generator.
In the soft-photon region, corrections were applied to the e+e– !  cross-
section [24]. In the hard-photon region, the full e+e– ! 3 cross-section was
used. However, the 3 phase-space can be parameterized in such a way that
there is no kinematic ambiguity, simplifying the issue. In addition, we used the
TFoam class even more extensively, to produce largely-unweighted events.
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Chapter 3

The HVRL eBeam Facility

The MIT High Voltage Research Laboratory (HVRL), administered by the MIT
RLE, is home to a 3 megavolt Van de Graaff electron accelerator. The HVRL is
an ideal location for a measurement of radiative Møller scattering. First, it can
routinely provide an electron beam up to 2.5 MeV in kinetic energy, and of 1 µA
in current. Second, the nature of the facility has allowed the experiment to be
run as an ongoing operation, rather than a scheduled installation. The electron
beam facility is run and maintained by Chathan Cooke. The following sections
regarding its construction draw from our personal communications.

3.1 Main Structure of the Accelerator

The accelerator is housed in a large tank (Fig. 3-1). The tank is filled with
approximately 95% N2, 5% SF6. It is held at a pressure of about 10 atm. During
periods of frequent service, it was opened once or twice per year. However,
with recent operation being largely stable, it was last opened over a year prior
to our installation. Shortly after our data acquisition runs, the tank needed to
be re-opened to repair a faulty beam current control relay. When the tank is
opened, the gas is stored in an auxiliary tank and then re-used.

3.1.1 Setting the voltage and current

A Generating Voltmeter (GVM) reads out the terminal voltage. Its output is
used in a feedback loop that sets how much current is put on the belt. The
current supply is located in the main control panel. Note that this differs from
some systems that use a corona discharge to remove charge from the belt. This
was chosen in order to circumvent the complexity of matching two feedback
systems.

The main Van de Graaff belt is turned by a motor at the bottom of the tank.
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Figure 3-1: The main accelerator tank.
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The belt then turns a secondary generator located at the top. This generator
provides an AC current to power the thermionic source. The frequency of
this AC current is thus related to the belt frequency, and its amplitude is not
adjusted. The generator also powers a DC power supply that controls the
extraction voltage, which ranges from about −80 V to +15 V. This extraction
voltage, rather than the AC heating current, is used to set the beam current.

3.2 Components Inside the Tank

Figures 3-2 and 3-3 schematically show the inside of the tank. In Fig. 3-2, the
letters correspond to:

A Filament
The filament is shaped like the letter “S”. The “S” curve lies in the hori-
zontal plane. The filament is made from tungsten wire, with a diameter
of about 0.25–0.5 mm. Its approximate dimensions are 1 mm � 2 mm.

B Extraction plate
This is approximately hemispherical with a diameter of �400. It is set to
a voltage ranging from −80 V to +15 V. Varying this voltage adjusts the
current of the beam.

C First initial acceleration stage
This accelerates the electrons to �30–40 kV. The first two electrodes are
connected electrically. As in all of the acceleration sections, the electrodes
are �1 mm thick and are spaced approximately 100 apart.

D Second initial acceleration stage
This accelerates the electrons to �30–50 kV.

E Main acceleration column
This stage completes the acceleration of the electrons to their maximum
energy. The electrode voltage in this section scales up linearly. Dotted
lines are used here to indicate the presence of many electrode stacks.

F Base plate
This separates the acceleration column from the solenoid.

G Solenoid
An approximately 1000 tall solenoid, with an outer diameter of roughly
8–900 and an inner diameter of approximately 3–400.

H Accelerator base
Approximately 400 of steel.
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Figure 3-2: Side view of the acceleration column. In this image, the beam
travels downward. Not to scale.

In Fig. 3-3, the letters correspond to:

I Beam pipe
The main beam pipe. It is roughly 600 off the center axis.

J Resistor ladder
This carries the current generated by the Van de Graaff, and sets up
voltages on the inner and outer field electrodes.

K Motor and belt
The approximate location of the belt and motor. The belt is made of fabric
infused with rubber.

L Outer field rings
These set up the voltage gradient in the pressurized portion of the tank.
They are complementary to those inside the acceleration column.

Figure 3-5 shows a picture of the accelerator column within the tank. Fig-
ure 3-6 shows a picture of the top of the acceleration column with the cover
removed; the belt is visible on the right side, and on the left, the beam tube
(with red filament leads).
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Figure 3-3: Top view schematic of the tank. Note: the accelerating elec-
trodes and solenoid are not shown. Not to scale.

Figure 3-4: A set of electrodes similar to those inside the tank. This
particular set is optimized for ion beams and contains curved electrodes.
Those used for electron beams are flat.
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Figure 3-5: The acceleration column inside the tank.

48



Figure 3-6: The top of the acceleration column, with the cover removed.
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3.3 Control Panel Components

Figures (3-7) and (3-8) show the main accelerator controls. In the left panel:

0 ADC/DAC backplane
These provide digital I/O for many of the control panel’s functions. These
are read out in the LabView slow control system.

1 90° bend power supply
This powers the downstairs 90° bending magnet.

2 Focusing solenoid power supply
This powers the focusing solenoid inside the tank.

3 Main current supply
This power supply feeds current onto the Van de Graaff belt. The knobs
control the feedback system and are not typically adjusted.

In the right panel:

4 Steering coil power supply
This powers the set of N–S and E–W steering coils located just outside
the tank.

5 Digital GVM readout
This displays half the terminal voltage: the number shown must be mul-
tiplied by two to get the voltage, in MV.

6 Raw GVM readout
This shows the raw GVM current readout. This number is scaled to
provide the above digital readout.

7 Current control
This controls the machine current.

8 Spray voltage
This controls how much voltage is available to the feedback system
putting current on the belt.

9 Terminal voltage control
This sets the terminal voltage.

3.4 Typical Operating Conditions

According to C. Cooke, in typical operation, spot sizes of �0.1 mm upstairs, and
�1 mm downstairs were common. Table 3.1 shows the solenoid currents that
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Table 3.1: Solenoid currents used to achieve the minimum beam spot
size at various beam energies. Shown for when the spot is optimized at
both the upstairs and downstairs beam locations.

Terminal Voltage (MV) Solenoid Current (A)

Upstairs

1.5 0.67
2.0 0.85
2.5 1.05
2.6 1.05
3.0 1.15

Downstairs

0.5 0.30
1.0 0.45
1.5 0.55
2.0 0.70
2.5 0.79
3.0 0.95

were required to achieve this. The beam diameter was measured by using it to
melt a hole in scotch tape.

Vacuum gauges are located in both the upstairs and downstairs experimen-
tal areas. Upstairs, the pressure is in the vicinity of 9 � 10−8 torr. However, the
downstairs gauge has recently been reaching approximately 2 � 10−5 torr. This
is well above the typical scale of �1 � 10−6 torr. This increased contamination
has caused more-frequent accelerator conditioning to be necessary. The jump
in pressure seems to be the result of a leak in the 90° bending magnet.
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Figure 3-7: Left accelerator control panel.
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Figure 3-8: Right accelerator control panel.
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Chapter 4

Design and Commissioning of the
Radiative Møller Experiment

The Radiative Møller experiment was designed, primarily, to measure the
scattered-electron momentum spectrum at several different angles. In the
following chapter, the experimental design and rationale are detailed.

4.1 Development of an Experiment at the HVRL

The primary goal of the experiment was to verify the new calculation of ra-
diative Møller scattering with the electron mass. Therefore, the experiment
should take place at low energy, in the region where the electron mass is impor-
tant. Additionally, a layout with magnetic spectrometers is an obvious choice
for an electron energy measurement. A schematic of the initially-conceived
layout is shown in Fig. 4-1. There were many decisions that had to be made, in
the interest of designing a realistic experiment.

4.1.1 Design of a Focusing Spectrometer

A high-precision measurement of the absolute Møller cross-section is quite
difficult. This requires exceptional knowledge of the luminosity and detector
acceptance. The former, especially, is particularly difficult. This informs our
choice of which coordinates to investigate: the angular distribution of the near-
elastic electrons, or the electron momentum spectrum at fixed angles. In the
end, some knowledge of both of these is desired. However, it was chosen to
primarily investigate the momentum spectrum: the shape of the radiative tail.
This is a better choice in part because shape of the radiative tail is a direct
probe of the radiative corrections. Furthermore, at high precision (<1%), its
shape can provide information into the validity of different models of radiative
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Figure 4-1: Initial schematic of the experiment layout.

corrections: exponentiated versus non-exponentiated, for example.
A focusing magnetic spectrometer is an effective way to measure a mo-

mentum spectrum. Table 4.1 shows the initial goals that were set out when
designing the spectrometer. The main functions of the spectrometer are to
provide dispersion in momentum, and to focus point-to-point in angle. The
focal plane denotes the location at which the momentum dispersion is approxi-
mately linear, and to which the electron �-coordinate is focused. Figure 4-2
shows a schematic of the �-angle focusing and momentum dispersion in the
spectrometer. The position of the focal plane, h and ˛ can be calculated to
first-order by the expressions [25]:

h =
r2

d

˛ = arctan
�

1 +
d – r
2r

�
.

(4.1)

This is, of course, an approximation. A complete field simulationwasperformed
in Ansys Maxwell and later incorporated into a Geant4 simulation in order to
more-precisely quantify the dispersion. In the end, the hit pattern at the focal
plane draws out a two-dimensional rectangle, with coordinates of electron
momentum and � (scattering angle). The detector is placed at this location, in
order to record this.

4.1.2 Considerations for Luminosity Monitoring

Anattempt todirectlymeasureMøller scattering, a standard luminosity-monitoring
process, leads to an interesting dilemma. An absolute measurement of the cross-
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Table 4.1: Initial Detector Design Goals

Detectors One dipole spectrometer +
readout at focal plane

Dipole radius 28 cm
Dipole angle 90°
Radial distance to detector 60 cm
Momentum acceptance �p/p �10%
Momentum resolution ıp/p �10–3

� acceptance ˙0.5°
� acceptance 1°

Signal Angles 25° to 45° (in 5° steps)
Signal electron momentum 0.9–2.1 MeV/c
Signal detector field 100–250 Gauss

Focal Plane

Radius = r

d

h

α

Detection

Scattering 

Figure 4-2: Schematic of distances and angles in the focusing spectrom-
eter.
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section will be limited, in part, by knowledge of the luminosity. Given that
Møller scattering is typically the best-known process in a detector to begin
with, this becomes an issue: the remaining normalization processes are all less
well-understood. Additionally, many existing experiments measuring these
processes have used Møller scattering for normalization, rendering their results
unhelpful.

An effective way to combat this is to design an experiment that normalizes
one part of the radiative Møller spectrum to another, thus reducing the im-
portance of knowing the precise luminosity. There are two main methods of
achieving this. One is to sweep the detector’s acceptance across the interesting
region very slowly so that consecutive windows cover an overlapping region of
parameter-space. The other is to use a relative luminosity monitor, with the
requirement that it be exactly the same for every setting. A second spectrome-
ter was initially planned for this; however in the end, a Faraday Cup was used
(§4.8.1).

4.1.3 Continuous versus Discrete Angles

The main spectrometer must be capable of analyzing different scattering angles.
However, a choice had to be made as to whether it should be able to measure a
continuous range of angles, or a set of discrete ones. In the end it was decided to
place the spectrometer on an arc-shaped track, with pins to lock it at different
positions.

The decision to pursue discrete angles over continuous ones stemmed
from the desire to know the scattering angle to �0.1°. It is difficult and time-
consuming to repeatedly survey a continuously-rotating spectrometer to high
precision. However, with locking positions, the spectrometer can be moved
between specified angles with extremely good repeatability (differences unde-
tectable with optical equipment sensitive to �10 µm). This allows the setup to
be precisely surveyed once in place, and then the detector can easily be set in
any position to take more data.

Additionally, a primary experimental goal was identified as measuring as
much of the radiative tail to as high a precision as possible. Therefore, it was
less of a priority to measure a large range of angles, and more important to
characterize the momentum spectrum. The locking rotation mount was thus
an important simplification with little experimental cost.
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Figure 4-7: Layout of the installation at the HVRL.
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4.2 Experimental Design

The experimental apparatus was designed and fabricated at the MIT Bates
Research and Engineering Center. The design consists of two spectrometer
arms; however, only the moving arm was used at the HVRL (Fig. 4-7). The
moving arm consists of a 28 cm 90° bending dipole magnet and a scintillating
tile focal-plane detector (Figs. 4-22, 4-13, 4-23). A tungsten collimator defines a
square 1° � 1° acceptance (Fig. 4-8). The magnet moves along a track (Fig. 4-15),
and locks into place at nine positions between 25° and 45° (Fig. 4-14). When
the experiment was run, however, the spectrometer was kept in the range of
30° to 40° degrees to avoid placing undue stress on the bellows.

The entire system is held under vacuum in order to minimize multiple
scattering of the low-energy electrons. A flexible bellows facilitates this (Figs.
4-9, 4-10, 4-11). The electrons exit the internal vacuum chamber (Fig. 4-21)
through a Kapton window a few centimeters from the focal plane (Figs. 4-12,
4-19). Themain spectrometermagnet is a “C”-magnet design, with an additional
Kapton window at the back of the magnet. This allows higher-energy elastics to
escape the system during Møller measurements, without producing too much
background (Figs. 4-20, 4-16),

The available targets are 2 µm and 5 µm diamond-like carbon foils from
MicroMatter. These are mounted on a ladder which re-uses the positioning
mechanism of the DarkLight 2012 beam test [26] (Fig. 4-17) . MicroMatter
produces the foils by laser plasma ablation deposition. A laser evaporates
carbon from a sputter target, creating nanoparticles which are deposited onto
a substrate [27]. A 1 µm foil was initially mounted, but it disintegrated during
installation.

4.3 Estimation of Target Foil Heating

It is important that the electron beam does not heat up the carbon foil to the
point where it burns a hole. Here, this heating is estimated. It is assumed that
the foil is in vacuum, and therefore only radiative heat losses are calculated.
In reality, there will be additional heat transfer out through the metal fitting
holding the foil, so these figures are an overestimate of the resulting tempera-
ture. In the end, a foil temperature distribution is sought as a function of radius.
We also assume the beam is Gaussian distributed according to: exp(–r2/r2

0)
(nominal r0 = 0.1 mm).

The method consists of dividing each foil up into circular shells (Fig. 4-24).
Each shell receives energy from:
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Figure 4-8: Cutaway view of the tungsten collimator. The center rectan-
gular aperture defines the acceptance, and the two rotated holes provide
additional conductance to allow the vacuum to equalize.
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Target
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Figure 4-9: Bellows at the nominal 35° angle.

Figure 4-10: Bellows when the spectrometer is moved to 25°.
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Figure 4-11: Drawing of the bellows, including dimensions.

Figure 4-12: Angle and position of the focal-plane exit window.
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Figure 4-13: Front view of the experiment apparatus.

Figure 4-14: Locking pin system used to select the spectrometer angle.
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Figure 4-15: The rolling apparatus used to allow movement of the main
spectrometer (view from below).

Figure 4-16: Drawing of the full spectrometer apparatus.
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Figure 4-17: The target ladder apparatus.

Figure 4-18: Top view drawing of the apparatus
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Figure 4-19: Kapton window assembly adjacent to the focal plane.
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Figure 4-20: Kapton window assembly at the rear of the spectrometer.
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Figure 4-21: Cutaway view of the spectrometer magnet, showing the
internal vacuum chamber.
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Figure 4-22: Top view of the apparatus, including the original fixed
luminosity arm (left).
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Figure 4-23: The moving spectrometer arm.
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Figure 4-24: Diagram of heat transfer in the foil.

• Power conducted in from last shell

• Power deposited from beam

• Ambient radiation absorbed

The shells lose energy via thermal radiation, and by conducting power to the
next shell. In equilibrium, the total absorbed power equals the total radiated
power. Considering power transfer from one shell to the next gives �T:

P = 2��t
�T

ln r2/r1
.

Conserving energy yields the radiation, which then provides an absolute T.
The environment is approximated as a 300 K blackbody. At the center of a

spherical 300 K blackbody, the radiant flux P/A = �T4
env. Therefore the energy

absorbed in a differential area element of the foil is

dP = �c�T4
env dA,

and conversely, the re-radiated energy is

dP = �c�T4
c dA.

As indicated by NIST ESTAR [28], the stopping powers in carbon for a
3 MeV electron and a 100 MeV electron, respectively are 1.648 MeV cm2/g and
3.984 MeV cm2/g.

The results of the calculation are shown in the following figures. Here,
temperature distributions are shown for a 5 µm target in a 1.0 µA 3 MeV beam
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Figure 4-25: 5 µm target, 3 MeV, 1.0 µA beam with 0.1 mm radius.

(Fig. 4-25), a 10.0 µA 3 MeV beam (Fig. 4-26), a 1.0 µA 100 MeV beam (Fig. 4-27),
and a 10.0 µA 100 MeV beam (Fig. 4-28). For a 3 MeV beam, the hottest point at
10.0 µA is 339 K, only 39° above the specified room temperature. This indicates
that foil heating should not be a significant problem.

4.4 Considerations on Overall Precision

In an ideal world, with very low beam emittance and no multiple scattering
effects, a precision measurement of the shape of the radiative tail can be made.
However, as was later seen, this is not an accurate description of the environ-
ment at the HVRL. Prior to this realization, a study was performed in order to
understand how well the beam energy and scattering angle must be known, if
a one-percent measurement were be made in an ideal world. The following
sections describe the results of this study.

To this end, the radiative generatorwasused to calculate theMøller electron
momentum spectrum at various settings near 25° and 2.5 MeV. The nominal
spectrum is shown in Fig. 4-3. This, and all other radiative spectra shown here,
are integrated over 1°, e.g. from 24.5° to 25.5°. This mimics the spectrometer’s
acceptance. The error bars on the plots in this section represent Monte Carlo
simulation uncertainties.

Slight perturbations in this spectrum are hard to see, so ratios are plotted
instead. For these ratios, the x-axes of the spectra are first aligned, with the
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Figure 4-26: 5 µm target, 3 MeV, 10.0 µA beam with 0.1 mm radius.
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Figure 4-27: 5 µm target, 100 MeV, 1.0 µA beam with 0.1 mm radius.
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Figure 4-28: 5 µm target, 100 MeV, 10.0 µA beam with 0.1 mm radius.

electron momentum now represented as a percentage of the non-radiative
momentum. This approximates what would happen in a measurement if the
actual momentum were unknown, and the spectra were scaled to the closest
simulation.

Figure 4-29 shows the effects of changing the beam kinetic energy by
˙100 keV. The lower (2.4 MeV) and upper (2.6 MeV) parameters are simu-
lated separately, and their ratio to the nominal spectrum (2.5 MeV) is shown.
Here, an approximately 5–10% effect is seen. For a �1% measurement, it fol-
lows that the beam energy should be known to 10–20 keV. Figure 4-31 confirms
the expected behavior when the beam is varied by only 10 keV.

Figure 4-30 shows the effects of changing the scattering angle by ˙0.1°.
The lower (24.9°) and upper (25.1°) parameters are simulated separately, and
their ratio to the nominal spectrum (25.0°) is shown. Here, a few-percent effect
is seen.

4.5 Possible Measurement of the Beam Energy

The energy of 2.5 MeV electrons elastically-scattered off carbon is essentially
independent of angle: to within tens of eV, it is equivalent to the beam energy.
This facilitates an indirect measurement of the beam energy using the moving
spectrometer. In addition, knowledge of the beam energy allows an absolute
calibration of the magnet.
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Figure 4-31: The radiative Møller spectrum for beam energies of 2.51
MeV and 2.49 MeV, divided by the spectrum at 2.5 MeV. This is for scat-
tering at 25°.

Since the exact mapping of the magnet is not known, the best way to make
this measurement is with a ratio. To illustrate this, we first define the magnet
current that places the electron-carbon elastic line on the central trajectory as
IeC, and the Møller elastic line as Imol. These are measurable quantities. Since
the magnet current should be proportional to the momentum of the central
trajectory, we can write:

Imol

IeC
=

Pmol

PeC
. (4.2)

Then, since PeC Š Pbeam,

Imol

IeC
=

Pmol

Pbeam
� R (4.3)

where we define the measured current ratio as R. Figure 4-32 shows this as a
function of Pbeam. We also note that Pmol = Pmol(Pbeam, �). Figure 4-34 shows
this as a function of � , and Fig. 4-36 as a function of beam energy.

The derivatives of the above quantities are shown in Figs. 4-33, 4-35, and
4-37, illustrating the high sensitivity of the Møller electron momentum to both
the scattering angle and beam momentum. Clearly, inverting these to make an
accurate measurement of Pbeam requires precisely measuring both R and � .
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4.5.1 Direct Calculation of the Uncertainty

It is useful to directly calculate the contributions to the uncertainty on Pbeam

from the errors on the measurements of the scattering angle and the current
ratio R. For lab-frame kinematics, we find that

Pmol =
2mPbeam cos �(Ebeam + m)
(Ebeam + m)2 – P2

beam cos2 �
. (4.4)

This can be rearranged to show that

Pbeam =
2m
p

cos �(R – cos �)(R cos � – 1)
R sin2 �

. (4.5)

From here, it is easy to calculate the contributions to the error on Pbeam from
both ıR and ı� . For the nominal � = 25° and R = 0.631, the total error on Pbeam

is represented by

ıP2
beam = (13.2276 ıR)2 + (14.7708 ı�)2 (4.6)

where ı� is measured in radians. Converting to a fractional error ıR/R � ıR,
and expressing ı� in degrees, this becomes

ıP2
beam = 69.61 � ıR

2
+ 0.0665 � ı�2. (4.7)

For ıR = 0.1% and ı� = 0.1°, this gives ıPbeam � 27 keV. For ıR = 0.1% and
ı� = 0.05°, we find ıPbeam � 15 keV. Figures 4-38 and 4-39 show the individual
contributions from ıR and ı� .

4.5.2 Surveying and Current Measurement Precision

In order to make a percent-level measurement, we have found that the scatter-
ing angle must be known to at least 0.1°, and the beam energy to about 15 keV.
To measure the latter, the scattering angle must again be known to <0.1°, and
the current ratio R = Imol/IeC must be known to about 0.1%.

Surveying the Angle of the Spectrometer

The angle of the spectrometer can be surveyed using a theodolite by harnessing
the parallax effect. A baseline is drawn on the face of the spectrometer, with
two marked points. Another baseline is marked on the floor, also with two
marked points. At each point on the floor, the theodolite is used to measure the
angles between the other three points. Figure 4-40 shows a schematic of what
angles are measured. The angle between the baselines can then be calculated.
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Figure 4-40: Schematic of the survey layout, with the four measured
angles.

If the line on the floor is not parallel to the beam axis, the measurement can be
repeated to calculate the offset.

The theodolites are precise to about 1 mgon (about 0.0009°). Distances
can be measured routinely to approximately 1 mm. With toy angle values of
�1 = 20°, �2 = 30°, �3 = 60°, and �4 = 30°, the angle between the baselines is
32.937° ˙ 0.079°. This is sufficiently precise for a 1% measurement.

Measuring the Current Ratio

Measuring the current ratio requires adjusting the magnet current so that the
electron-carbon or Møller lines sit on the central trajectory. Doing this accu-
rately depends on the detector precision, and how well the current is known.
The detector has 60 tiles in a roughly 10% momentum window, reaching to a
precision of approximately 0.2%. The magnet power supply has a built-in meter
that is accurate to approximately 1%. An additional, more accurate ammeter
may be necessary for this.

Knowledge of the Beam Angle

The angle of the HVRL beam relative to the central line of the assembly must
also be known to approximately 0.1°. However, the beam angle is not currently
known to high precision. A method of measuring and/or adjusting the angle of
the beam will be important for a future 1% measurement.
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15 cm

Figure 4-41: Layout of the detector, including scintillating tiles, SiPMs
(and boards), amplifier boards, and a frame. The image is “upside-down”;
electrons travel upward from the magnet and strike this shown side first.

4.6 Focal Plane Detector

The focal plane detector consists of a two-layer array of scintillating tiles (Fig.
4-41). The tiles are 2.5 mm wide and 0.5 mm thick, and were made in two
lengths: 60 mm and 160 mm. These were made to our specifications by Eljen
Technology and were diamond-milled in order to have optically-clear edges
(Fig. 4-42). The material is their EJ-212, which is based on a combination
of polyvinyltoluene and fluors, and is similar to Saint-Gobain’s BC-400. The
intended active area is 4 cm � 15 cm, corresponding to 16 tiles (angle) by 60
tiles (momentum).

4.6.1 SiPMs and Readout Electronics

The SiPMs are 2 mm Hamamatsu MPPC S13360-2050VE. These have a physical
pitch of 2.4 mm. The SiPMs were purchased in a large batch, and then sorted
by breakdown voltage. Seventy-six SiPMs were chosen with extremely similar
voltages, having a mean of 53.980 ˙ 0.026 V (0.05%). This allows a single
high-voltage supply to provide a suitable bias to all of the SiPMs.

To align with the 2.5 mm tiles, the SiPMs are rotated at an angle of 45° (Fig.
4-44). The tiles are read out alternately on the left and right sides, to allow
the SiPMs to be spaced 5 mm apart rather than constricting them to 2.5 mm.
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2.5 mm

Figure 4-42: The scintillating tiles, in their packaging.

They are installed on eight-channel boards that mount directly to the side of
the detector.

The amplifiers (Fig. 4-43) are intended to have both high gain and a fast rise-
time. Each board contains eight channels, to facilitate a 1:1 connection between
SiPM boards and amplifier boards. They contain an on-board discriminator
based around an LTC6754 comparator. An onboard eight-channel digital-to-
analog converter (DAC) outputs voltages to the comparators, which use them
to evaluate pulses from the SiPMs. Upon positively identifying a pulse, the
comparator then outputs a digital LVDS signal directly to the TDC. Each of the
DAC’s output voltages can be set individually using a serial interface. Individual
timing offsets for each pair of channels were determined at the analysis stage,
by histogramming the hit time separations. A 5 ns window was chosen to define
coincidences, consistent with both the histograms and the intrinsic pulse rise
time.

In a polyvinyltoluene-based scintillator, a 1 MeV electron is expected to
have an energy loss of 1.824 MeV cm2/g [28]. This equates to approximately
93 keV in 0.5 mm. The scintillator emits approximately 10,000 photons per
MeV [29], indicating that approximately 930photons are emitted. A rectangular
fiber traps approximately 4% of emitted photons [30] (further attenuation
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notwithstanding), indicating that approximately 37 reach the SiPM. The SiPM
has a detection efficiency of approximately 40% [31], indicating that roughly
15 photons will be detected on a typical event. A precise conversion between
number of photons and pulse voltage is not known; however a threshold of
approximately 650 mV was used by the discriminator, as this was the lowest
possible that could sufficiently reject background noise.

Figure 4-43 illustrates the layout of an amplifier board. The components
are labeled as such:

Figure 4-43: An amplifier board with connectors labeled.

A Input from SiPM board

B LVDS data output

C Slow control input, and daisy-chain output

D Power
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Figure 4-44: The partially-assembled focal plane detector, showing
2 mm SiPMs oriented at an angle.
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Figure 4-45: Closeup of the focal plane detector support structure.

Figure 4-46: Overall amplifier/discriminator board schematic.
(J. Bernauer)
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Figure 4-47: Circuit diagram for a single channel. (J. Bernauer)

4.6.2 Detector Construction

The detector frame was 3D printed from nylon via a selective laser sintering
process. This allowed complicated shapes to be implemented. For example,
hexagonal countersinks are located on the inside of the detector, to hold nylon
bolts connecting the SiPM boards. The detector frame is visible in Fig. 4-44.
The frame ismountedon a support designed and constructed atBates (Fig. 4-51).
The support is composed of a red G20 piece that sits on the focal plane flange,
and a stainless piece that holds the amplifier boards in place. These pieces
clamp together around the detector frame. The amplifier boards are mounted
at a 45° flare-out in order to maximize access while still keeping them close to
the SiPM boards.

4.6.3 Initial Idealized Simulations

Figure 4-52 shows a simulated hit map on the focal plane detector. This was
produced using a Geant4 simulation of the entire apparatus under idealized
conditions, with the magnet positioned at 25°. Events were defined as having
at least one hit above threshold in each of the two planes. The X Fiber maps to
momentum, and the Y Fiber maps to scattering angle.
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Figure 4-48: Circuit diagram for the DAC component. (J. Bernauer)

Figure 4-49: Circuit diagram for the discriminator section, including
the comparator. (J. Bernauer)
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Figure 4-50: Diagram of the connector inputs/outputs. (J. Bernauer)

Figure4-51: The focal plane detector, mounted to the spectrometer. Data
cables are not shown.
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Figure 4-52: Idealized simulated hit map on the focal plane detector for
a 2.5 MeV beam at 25°. X Fiber corresponds to momentum (lowest left),
and Y Fiber scattering angle (lowest top).

4.7 Commissioning Run

A reduced detector was installed at the HVRL for the main purpose of visualiz-
ing the beam (see image in Fig. 4-53). This detector consisted of:

• The movable target ladder with two carbon targets and the beryllium
oxide screen.

• A single camera, to view the BeO screen through the target chamber port.

• Both spectrometer ports blanked off with aluminum.

• Beam exit flange blanked off with aluminum.

• No power to the spectrometer magnet.

The camera recorded video of the BeO screen for the entirety of the run. It was
read out on a computer located in the upstairs control room. This allowed the
video to be watched in real time, while tuning the beam. The target ladder, and
later the quadrupole magnet, were also read out and controlled from upstairs.

4.7.1 Beam Delivery and Focus

A 2.5 MeV electron beam of approximately 1 µA was delivered to the Radiative
Møller experiment. According to the GVM readout, the beam energy was
approximately 2.502–2.504 MeV, and thiswasheld stable throughout the course
of the run. The downward-going beam was bent into the horizontal plane, and
then traveled a distance of approximately 2 meters to the target (Fig. 4-54).
The beam spot was visualized on a Beryllium Oxide screen. The screen is
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Figure 4-53: The commissioning run apparatus.

approximately 1.37500 tall, and has a 1/800-diameter hole at the center. Several
hours of optimization were required to find the settings that would put the
beam on target.

Using the existing equipment, the beam could not be focused to better
than approximately 0.7500 in diameter (Fig. 4-55). This is not sufficient. A
single quadrupole was installed approximately 28.500 from the 90° bend, for
exploratory purposes (Fig. 4-57). It was used to focus the beam into a horizontal
line approximately 1/1600 tall (Fig. 4-56). A current of approximately 0.3 A
(voltage of 0.7 V) was required to focus the beam; this corresponds to fields of
roughly 50 Gauss. The opposite polarity was checked, to vertically focus the
beam, but not thoroughly tested due to the difficulty of positioning the line.

4.7.2 Target Scan

While the beam was focused into a line, the target ladder was swept down and
up. This directed the 2.5 MeV electrons onto the carbon foil targets. No damage
to the targets was observed.
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Figure 4-54: The commissioning run beamline configuration. The
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Figure 4-55: The beam profile, without focusing.
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Figure 4-56: The beam profile, after focusing by a single quadrupole.

4.7.3 Accelerator Optimization

On the third day of beam commissioning, the accelerator controls were scanned
to determine the optimal settings. Some of the parameters that were changed
include:

• Beam focusing solenoid current (upstairs, at accelerator exit)

• Upstream beam steering controls (N–S and E–W)

• 90° magnet current

Two particularly important parameters were scanned: N–S beam steering, and
90° magnet current. The former controls the location of where the beam enters
the 90° magnet (Fig. 4-58), and the latter its bending strength. If the beam hits
the target, the exact path it took to get there is not known: various combinations
of these controls put the beam on target. The edges of the workable parameter
space were determined. In the middle, the least amount of beam distortion
was observed. These parameters were recorded for future runs. It is believed
that they direct the beam to the center of the 90° bend.
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Figure 4-57: The quadrupole installed on the beamline.

Figure 4-58: One of the beam parameters explored: the angle/position
entering the 90° bend magnet (shaded area).

98



4.7.4 Conclusions from the Commissioning Run

The commissioning run identified that a beam can be produced, but that addi-
tional infrastructure would be required to reduce the spot size and control its
position. In particular, focusing and steering magnets would be required.

4.8 Upgrades Installed after the Commissioning Run

After the commissioning run, a number of priorities were identified. First, the
installation of a new pair of quadrupoles would be essential. Second, two sets
of steering coils were desired. Third, the new Faraday Cup would be tested and
installed in the apparatus. During the Fall of 2017, these goals were achieved.

These upgrades necessitated a replacement of the existing upstream beam-
line with one of a smaller diameter, in order to accommodate the quadrupoles.
In the process, a gate valve was installed to separate the experiment from the
HVRL’s vacuum, when necessary. A 6-way cross was also installed, for the dual
purpose of housing a nitrogen backfill port and a future second BeO screen.

4.8.1 Faraday Cup

A Faraday Cup was developed with the goal of measuring the beam current
(typically 10–100 nA) to 1%. It was designed to connect at the far downstream
end of the experimental apparatus to provide an online, real-time current mon-
itor, by collecting the scattered beam electrons (e.g. [32, 33, 34]) and measuring
them with an electrometer [35]. The Faraday Cup operates under vacuum,
in order to achieve the cleanest signal. It has an optional bias of up to 500 V,
in order to trap backscattered electrons. Figure 4-59 shows a diagram of the
construction; Fig. 4-60 indicates the internal dimensions.

The Faraday Cup was tested by connecting it directly to the beamline
(Fig. 4-61). This permitted troubleshooting prior to the more-permanent instal-
lation at the downstream end of the experiment. The bias voltage was scanned,
but no change in the signal was observed. As a result, in future runs, the bias
was left disconnected. The accelerator controls were also further optimized to
maximize the current delivered to the location of the Faraday Cup.

4.8.2 Quadrupoles and Steering Magnets

With the aid of the MIT Bates Laboratory, two quadrupoles and and two sets of
steering coilswere installed at theupstreamendof thebeamline (Figs. 4-62, 4-63).
They were constructed to fit around the new 1.500 upstream beamline. The
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Figure 4-59: Diagram of the Faraday Cup construction.

quadrupoles were oriented such that they focused in the vertical and horizon-
tal directions. They were mounted on a track, to allow for easy positioning.
The track sat on a sturdy support plate, precisely positionable using turnbuck-
les. Two full sets of Haimson air-core steering magnets were mounted before
and after the quadrupoles (Fig. 4-64). These provided more-than-adequate
position control of the beam. The beam quality at the target location was sub-
stantially improved after installation of the quadrupoles and steerers. A spot
size of approximately 1/800 was routinely achievable (Fig. 4-65).
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Figure 4-60: Faraday Cup cutaway view including dimensions. Brack-
eted dimensions are in millimeters, unbracketed in inches.
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Figure 4-61: The Faraday Cup, installed directly on the beamline.
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Figure 4-62: The quadrupoles, steering magnets, and gate valve.
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Figure 4-63: Steering magnets and quadrupoles.

Figure 4-64: Haimson steering coils, attached to the beamline.
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Figure 4-65: Beam spot after installation of the quadrupoles and steerers.
The halo is visible, while the majority of the beam passes through the
1/800 hole.
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Chapter 5

Slow Control and Data Acquisition
Systems

A wide variety of systems were developed in order to facilitate the running
of the experiment. These included new custom data acquisition/processing
software, a LabView slow-control graphical interface, and some additional
custom Python controllers. The majority of the experimental hardware systems
were controlled using two primary computers. This chapter describes how
these systems were realized and configured.

5.1 Data Acquisition with the VME TDC

The focal-plane detector’s amplifier/discriminator cards contain an LTC6754
comparator for each channel. These each produce a digital LVDS pulse when
the associated SiPM voltage rises above threshold. A CAEN VME v1190A TDC
reads out the pulses and assigns a time to each hit. Code documentation can be
found in Appendix A.

In a typical configuration, the TDC outputs the time difference between a
trigger pulse and a signal pulse, using a high-resolution clock. However, we
prefer to stream all of the hits out of the TDC and do the analysis in software.
This requires gathering the hit channels and their absolute hit times from
the TDC. In the end, we want channel–time pairs upon which to perform the
analysis.

The primary clock is 32 bits long with a period of 98 ps: this rolls over
approximately every 52 µs. If this were the only clock, it would be impossible
to tell whether events in the data stream occurred near the same time (were
related), or were actually separated by more than 52 µs. Two events in a batch
could receive similar clock values, but be separated by an unknown number of
rollovers. As a result, a counter longer than the primary clock is required in
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Figure 5-1: Diagram of the times measured in a trigger window. Clock
refers to the bunch clock ETTT; TA and TB are measured using the high
resolution, 98 ps timer. Based on figure from [36].

order to tell these apart.
Fortunately, the TDC includes a secondary 32-bit, extended counter, with a

resolution of 25 ns. This is commonly referred to as the bunch counter. This
bunch counter rolls over approximately every 107 seconds. When this counter is
saved, its value is referred to as the Extended Trigger Time Tag (ETTT). When
the TDC receives a trigger signal, it records the bunch counter as the ETTT;
when it receives an event pulse, it records the time between it and the bunch
increment1. Figure 5-1 illustrates the times that are recorded for an example
trigger window. By combining the short, high-resolution time with the longer
ETTT, an absolute hit time can be reconstructed with a full resolution of 98 ps.
This can be used by the DAQ software to evaluate coincidence matching. In
order to enable continuous readout, a function generator configured to output a
−0.8 V (NIM-level) square wave provides a constantly-running fixed-frequency
trigger.

5.1.1 Programming the TDC

A number of trigger parameters are set when configuring the TDC (see Fig. 5-2).
They are:

• Match window width
This sets the length of the match window, in 25 ns clock cycles. The
maximum is 2048.

• Match window offset
This sets the offset of the match window from the trigger signal. It is

1The TDC can be configured to output the time to the trigger signal rather than the bunch
increment. However, this is not our desired mode of operation, because it introduces a jitter of
25 ns to our quantity of interest.
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typically negative. For a continuous set of measurements like we are
performing, it is mostly meaningless.

• Extra search window width
The TDC accumulates events in the L1 buffer while waiting for a trigger
signal. The events are not necessarily written in temporal order. This
window width is a measure of how far away to look when searching for
matching hits.

• Reject margin
In the L1 buffer, hits are stored until no conceivable trigger could re-
quire them. The reject margin sets how much longer, than the minimum
required time, hits should be kept before being discarded.

• Trigger time subtraction (enabled/disabled)
If enabled, the hit time is measured to the trigger signal. If disabled, it is
measured to the bunch reset.

t

tr
ig
ge
ri
np
ut

total latency

window offset

match window width

reject margin extra search

Figure 5-2: Diagram of the configurable trigger timing options. Items in
bold are programmable. Based on figure from [36].

Table 5.1 shows typical operation parameters. Appendix A.3 shows a typical
configuration script.

5.2 Data Acquisition Software

The TDC streams binary output to a FIFO buffer. The DAQ software reads the
raw data from this buffer, and recovers the channel and timing information.
However, in order to provide a tool to tune the detector, the DAQ must also be
able to visualize the detected hits in real time. Additionally, it must be fast: the
DAQ must read events from the FIFO buffer at least as fast as it is filled, in order
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Table 5.1: Typical TDC configuration parameters.

Match window width 2032 (0x7F0)
Match window offset –2032 (0xF810)
Extra search window width 8 (0x08)
Reject margin 2 (0x02)
Trigger time subtraction Disabled (0x00)

Control register Bits 5, 9 and 11 (0xa20)
TDC header and trailer Disabled (0x3100)
Maximum hits per event Unlimited (0x3300 and 0x0009)

that no events are lost. Software, written in Python/Cython, was developed in
order to meet these goals.

5.2.1 Software Structure

The DAQ software is multithreaded and split into specialized modules. Fig-
ure 5-3 shows the direction of data flow through the DAQ.

Reader

Processor

Detector

Raw Data

PyDAQRun Script

Saved Data

Display

Raw hits (buffered)

Events (buffered)

Hit locations

Figure 5-3: The data path in the acquisition software.

There are three primary components to the DAQ software: the Reader, Pro-
cessor, and Detector. These are all managed by the main DAQ class (PyDAQ),
which is controlled in the Run Script (RunDAQ.py). The Run Script provides
the DAQ with Reader, Processor, and Detector instances, and instructions on
where to find the data, where to save it, and where to display it. The Reader
and Processor each run in separate background threads, communicating via
buffers. The Detector processing is controlled in the main thread.
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The Reader

The Reader extracts hits from the FIFO buffer and decodes them. First, the
raw decoded version is saved to a PyTables HDF5 file. The reader continues by
reconstructing the absolute time for each of the recorded hits. It then passes
these channel-time pairs to an internal buffer.

There is a secondary option in which the Reader can receive hits from a
ZMQ TCP/IP stream. This allows the DAQ chain to be split onto different
computers, or different programs. This option is not commonly used.

The Processor

The Processor pulls channel-time pairs off the raw hit buffer, and processes
them into events. There are multiple processors that can be used. For example,
a Coincidence Processor selects groups of hits that are separated by less than
the specified coincidence window. A Direct Processor records some basic
information, and then passes the events along. These events are then saved to a
second internal buffer.

The Detector

The Detector pulls events from the Processor buffer, and then translates them
into physical, reconstructed detector hits. The Detector contains information
about our scintillating tile detector; in particular, a mapping from TDC channel
to physical tile location. Typically, the Detector is run at a refresh rate of �1 Hz,
processing �1 s worth of events per frame.

A Coincidence Detector processes events by analyzing the groups of co-
incidence hits. First, it sorts them by whether they were located in the top
or bottom tile layers. It then looks at top/bottom hit pairs, and calculates all
possible hit locations. These locations are then displayed, in real-time.

A Direct Detector simply identifies which tile was hit. The entire tile bar
is shown on the screen, rather than just the intersection spot. However, the
intersection point will be incremented twice (one for each hit), so it will appear
highlighted.

Visualization

Primarily, the detector hits are shown directly in the terminal. Here, special
ASCII characters are used in order to display an image of the hit locations.
Associated rates/counts are included, such as the total number of counts, total
rate, and rate for each tile.
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Figure 5-4: Layout of the experiment control panel.

A secondary method of visualization is via streaming to plot.ly, a cloud-
based plotting service. This produces prettier plots and allows any internet-
connected computer to see the live results, but it is bulkier and its features are
not typically necessary.

5.3 Magnets and their Controls

The magnets in use during the experiment included:

• Main spectrometer magnet

• Two sets of X-Y steering coils (total four current controls)

• Two quadrupoles (total two current controls)

The main spectrometer magnet was controlled by a Sorenson XPD pro-
grammable power supply, drawing currents from approximately 0 to 6 amps.
Due to the limited precision of the on-board display, this was largely controlled
via a computer. The quadrupoles were controlled with Rigol DP700 power
supplies connected via serial, requiring currents of roughly 0 to 1.5 amps.

The steering coils were controlled by a specialized crate provided by Bates.
This provided an interface for a bipolar power supply, offering currents ranging
from −0.5 A to 0.5 A. Each coil circuit (four in total) had an associated current
distribution card. These cards were controlled by a voltage ranging from −5 V to
5 V, used in a feedback loop to regulate the output current. The control voltages
were provided by a secondary on-board power supply and were adjusted by
potentiometers. A computer interface was used to read out the control voltages
and provide a display. Later, a USB-controlled voltage output device replaced
the secondary ˙5 V supply, allowing LabView control of the steering coils.
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5.4 LabView Control Software

The majority of slow controls were automated through a LabView interface.
A National Instruments PXIe crate containing Analog IO and Serial RS-232
modules, connected via PCIe, provided the hardware interface between the
devices and a Windows host computer. This allowed control of the following:

• Target ladder position control and readout

– This used a USB relay to control the actuator, and an analog input
to read back the encoder position.

• Steering coil current readout

– This was provided by four analog inputs.

• Steering coil current control (provided by a separate NI USB BNC analog
voltage output device)

• Faraday Cup current readout

– Facilitated by a serial connection to a Keithley electrometer.

• Accelerator terminal voltage readout

– This made use of a board of ADCs connected to the HVRL eBeam
control panel.

• Detector power and SiPM bias

– This was achieved via RS-232 connection to a power supply located
in the basement.

The Windows machine also displayed the output of a USB camera focused on
the BeO screen. The Linux DAQ computer, located in the control room, was
connected via ethernet to the VME crate (in the vault). This machine oversaw
the readout of the following:

• A sodium iodide (NaI) detector measuring backgrounds in the vault,
connected directly via USB.

• Data acquisition, via the DAQ software running on the VME crate.

• An Arduino, connected to the VME crate, used to control the discrimina-
tor threshold on the detector cards.

• The main spectrometer power supply, connected to the VME crate via
RS-232 and controlled by a custom slow-control shell.

113



By and large, the magnet power supplies were located in the control room,
and all readout electronics were located in the vault. This required a significant
amount of cabling: approximately 70 feet per run. The long RS-232 connections
were facilitated by active serial-over-ethernet repeaters, and direct USB 3.0
repeating cables were used for the other connections.

5.5 Typical Run Protocol

After becoming comfortablewith the system, it could be tuned relatively quickly
and reliably. The following steps were typically taken, to produce a beam and
start data acquisition. This protocol was repeated each time the accelerator
was turned on, or the parameters modified (due to drift, or other instabilities).

1. Lower the BeO oxide screen into the beamline.

2. Tune the beam to hit the BeO screen as cleanly as possible.

3. Carefully tune the quadrupoles to focus the beam. Typical currents were
roughly 1.4 A for the upstream (horizontal) quadrupole, and 1.2 A for the
downstream (vertical) quadrupole.

4. Use the steering coils to move the beam to the center of the BeO target.
Preference was given to the upstream steerers, when possible, to keep
the modifications as far from the target as possible.

5. Re-focus the beam after steering. Typically, only fine-tuning was required
at this point in order to pass the beam through the hole in the BeO screen.

6. Start data acquisition:

(a) Turn on power to the detector
(b) Use the Arduino controller to set a threshold of approximately 700–

800 (DAC units, equivalent to roughly 4096/5000 mV).
(c) Turn on the detector bias voltage
(d) Start the PyDAQ program

7. Tune the spectrometer to the electron-carbon peak

8. Adjust the accelerator controls in order to minimize noise and optimize
the signal quality. Typically, a quarter-turn or less of the solenoid current
fine-control was necessary, with perhaps some steering adjustments. It
was verified that these had little to no effect on the beam spot seen by the
BeO screen.

9. Continue acquisition for Møller and electron-carbon data
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Chapter 6

Data Analysis and Results

Commissioning data were acquired throughout the Spring of 2018. Data sets
intended for analysis were not acquired until after additional lead shielding
was installed at the end of May. This ensured that the following acquisition
runs were as free from noise as possible.

In the end, data for Møller scattering and electron-carbon scattering were
acquired at the angles of 30°, 35°, and 40° at a beam energy of 2.5 MeV. Data
were acquired in individual runs of approximately 60 seconds, in order to
be able to isolate issues from the beam becoming unstable should the need
arise. The acquisition rates were high enough that 60 seconds were plenty for
statistical errors to shrink to the size of the systematics.

6.1 Construction of a Matching Simulation

A Geant4 simulation of the experiment was constructed, conceived to be as true
to the actual physical design as possible. Nearly all major design components
were included, coded in the form of GDML (Geometry Description Markup
Language). A Python interface was used to produce the geometry files (see
App. B.2). The resulting model can be seen in Fig. 6-1. The magnetic field of the
spectrometer reflects a realistic map calculated from the SolidWorks model,
using Ansys Maxwell software. The target foil, lead shielding, internal vacuum,
Kapton windows, and external air gap were all included in the simulation.

The detector was modeled to closely reflect reality: each scintillating tile
was afforded its own physical volume. Hit locations were determined by finding
the intersection point of the associated scintillating tiles, just as in the actual
analysis. However, effects due to light yield and subsequent attenuation are
not included.
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Figure 6-1: The GDML model of the detector, used in Geant4 simulations.
The view is into the beamline.

6.1.1 Event Generators used in Simulation

The new radiative Møller generator was used extensively in the simulations.
However, a non-radiative Born-level generator was used for comparison and
testing. In addition, the radiative electron-proton event generator used by
OLYMPUS [37] was modified to represent the electron-carbon interaction
(GE = 6, GM = 0). Since the beam energy is too low to trigger excitations
in the carbon atoms, this is a reasonable approximation. This generator was
used primarily to determine if any significant backgrounds were caused by
electron-carbon scattering; none were found.

6.1.2 Consideration of Systematic Uncertainties

The simulation bands trace out the envelope of a large number of simulations
performed over a range of possible values of the beam-related parameters. Such
parameters are detailed in Table 6.1. In this way, systematics were introduced

116



into the comparison between data and theory.

Table 6.1: Selected systematic uncertainties included in simulations.

Measurement angle ˙0.75°
Beam angular spread 1.0° to 1.05°
Beam energy –75 keV to +10 keV
Effective target multiple scattering 0.25 � 2.0 g/cm3 carbon at 2 µm

The measurement angle uncertainty, ˙0.75°, represents uncertainty on
both the beam angle and the spectrometer angle. It is, however, dominated by
uncertainty on the beam angle: this is bounded only by the pipe diameter.

The beam energy uncertainty is asymmetric, due to two sources of uncer-
tainty. Chathan Cooke has on occasion measured the beam energy, and has
found that the GVM readout is accurate to within about 5–10 keV. However, a
recent measurement, performed by extracting the bremsstrahlung endpoint
with a LaBr scintillator [38], indicates that the beam energy is roughly 75 keV
below the GVM readout. With no data to break the tie, the entire range was
used in the uncertainty estimation (fortunately, the effects were small).

The beam angular spread was derived from an estimate of the beam’s trans-
verse geometric emittance. The beam spot size had been measured, in previous
years, at a location corresponding to the upstream-most end of our experiment.
Here, it was seen to be as small as 1 mm, with proper tuning. The vacuum pipe,
however, can accommodate a beam as wide as roughly 1 cm. During the com-
missioning run, the beam spot was observed to be approximately 100 in diameter,
2 m downstream at the BeO screen. From this, an angular divergence can be
derived, thus providing an emittance when combined with the corresponding
upstream spot size. In normal operation, the beam spot can be focused down
to a diameter of approximately 1/800 at the target. Combining this with the
estimated emittance yields an angular spread.

The angular spread due to the divergence, and due to multiple scattering
in the target are separate yet intertwined effects. Multiple scattering in the
target is an effect that is largest at large angles, since the electrons pass through
more of the target. On the other hand, effects due to the beam emittance
are mostly independent of angle. By adjusting the magnitude of these two
effects, the simulations were matched to the data. This involved omitting
simulated spectra that were inconsistent with the data. The data indicate a
level of multiple scattering consistent with one-fourth what would be expected
for a 2 µm target at a density of 2.0 g/cm3. This could indicate that the target is
either thinner than expected, less dense, or that Geant4 is not handing multiple
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scattering accurately for such a thin material. An additional beam angular
spread of approximately 1.0° to 1.05° is consistent with both the data and the
emittance estimation. Significantly different values of the target thickness and
the beam angular spread were inconsistent with the acquired spectra.

6.2 Calibration of the Spectrometer Mapping

A necessary component of the analysis is the conversion between momentum
and hit position on the detector. Being located on the focal plane, this con-
version should be approximately, although not exactly linear. A method was
devised to calculate this by adjusting the magnet current.

The calibration was performed using the elastic electrons, which have a
uniform momentum. Rather than stepping the electron energy and extracting
the calibration, the magnetic field was stepped, as this has an equivalent effect.
Assuming that the magnet current is directly proportional to the magnitude of
the magnetic field, it can be used as a proxy.

The elastic peak was swept across the focal plane detector by varying the
magnet current. The position was determined by a Gaussian fit to the top of
the peak (Fig. 6-2). The extracted position of the elastic peak (tile number), as
a function of magnet current, is shown in Fig. 6-3. The last data point differs
from the general trend due to problems in the fit at the detector edge; it was
thus omitted from further portions of the analysis.

The magnet current was then translated to an effective electron momentum,
and the data fit to a third-order polynomial. An orthogonal distance regression
was used, owing to the presence of both x and y error bars. The result can be
seen in Fig. 6-4.

The exact same procedure was repeated with the simulated detector, in
order to extract a mapping for use on the simulated data (Fig. 6-5) . This was
done in order to help mitigate effects resulting from differences between the
simulated and real magnetic field maps. By performing the calibration twice,
and using the simulated map for simulated data, and the experimental map for
real data, these discrepancies can be largely cancelled.

6.3 Estimation of the Detector Efficiencies

Effects of light attenuation are clearly visible in the data. This attenuation was
modeled, fit, and then the data were corrected. A double-exponential model
was used as a starting point for the model. This contains two terms: one for
light attenuated as a result of internal reflection, and a term for light attenuated
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Figure 6-2: Fit used to determine the location of the elastic peak. The
y axis is in thousands of counts. The fit indicates a peak location of
7.41 ˙ 0.07 (effective tile number).

in the bulk material. The bulk attenuation length is quoted by the manufacturer
as 2.5 m, which indicates practically constant attenuation on the relevant short
length scales. The rate R as a function of distance x was thus parameterized as:

R(x) = exp(–x/l) + C (6.1)

with free parameters l (reflective attenuation length) and C (bulk offset). The
overall scale was fixed.

To extract the values of these parameters, two splines were fit around each
edge of the detector: one on even tiles, and one on odd tiles (Fig. 6-6). With
a proper correction for light attenuation, these splines should converge. The
parameters of the correction model were then fit in order to minimize the
difference between the splines.

The detector efficiencies were extracted from the data using an iterative
unfolding method. The X and Y tiles were treated separately in each iteration.
To calculate each cycle’s X-tile efficiencies, splines were fit along the Y tiles.
Then the tile efficiencies were then fit in order to minimize the sum, at every
point, of the squared deviations of the splines from the data. The same method
was used to find the Y-tile efficiencies, by fitting splines along the X tiles. The
end result efficiencies were determined by multiplying the intermediate effi-
ciencies of all of the iterations. The algorithm converged relatively quickly, in
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Figure 6-3: Mapping from magnet current to peak position.

roughly 25 or fewer iterations.
The iterative unfolding method is useful when the underlying “true” data

can be well-represented by splines. To that end, spline-induced bias is mini-
mized when the data are as flat and smooth as possible. Such “flat” spectra were
generated by scanning the magnet current to methodically move the Møller
peak across the detector (e.g. Fig. 6-8). Efficiencies were reconstructed from
this relatively flat data set (Fig. 6-9), and then applied to the real data of in-
terest. Some bias is unavoidable based on the validity of the assumptions, but
it is ideally small in the region of interest. It is also important to note that
this method can only provide the relative efficiency between the tiles, not the
absolute efficiency. Likewise, it cannot account for long-range structure in the
detector efficiency, only short-range tile-by-tile variation.

The efficacy of this reconstruction method was evaluated by using a toy
model. Fake efficiencies were applied to a flat data set, which was then fed
through the reconstruction algorithm. The efficiencies were drawn from a
normal distribution with a mean of 1 and width of 0.05. Figure 6-7 shows
the result of this, in which the efficiency parameters were reconstructed to
roughly 10%. As a result, the error bars on the presented data points consist
of both uncertainty from statistics, and that resulting from an estimated 10%
uncertainty in the efficiency parameters. An example raw data set at 30° is
shown in Fig. 6-10, which is reconstructed to that in Fig. 6-11. Note that there
are three malfunctioning tiles. For comparison, a simulation at a single set of
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Figure6-4: Mapping fromhit position tomomentum, for real data events.
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r = 1.12.

parameters is shown in Fig. 6-12.

6.3.1 Detector Rate Linearity

The detector should have minimal effects from deadtime. The total acquisition
rate did not exceed 20 kHz. The readout itself is intrinsically deadtime-free,
but a 250 ns post-hit suppression time was added on a per-channel basis, in
order to suppress false hits due to ringing effects. This indicates that there
should be no significant effects until the rates approach the �4 MHz level. This
was tested by measuring the detector hit rate at a range of currents, as shown
for both electron-carbon and Møller in Fig. 6-13. Typical beam currents during
data acquisition ranged within 20–50 µA. The data do not indicate any obvious
non-linearities, meaning that effects from pileup, deadtime, or TDC buffer
overflow are insignificant.

6.4 Comparison of Data with Simulation

Figures 6-14, 6-15, and 6-16 show a comparison between the extracted Møller
spectra and that reconstructed from a complete radiative simulation. The
data have been scaled vertically to match. Small (sub percent-level) horizontal
offsets were added to the data in order to optimize the overlap. These small
offsets are consistent with uncertainties resulting from magnet hysteresis and
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Figure 6-5: Mapping from hit position to momentum, for simulated
events. �2

r = 0.83.

the intrinsic accuracy of the power supply. The full-scale momentum spectrum
is shown inFig. 6-17, demonstrating the relative positions of the electron-carbon
and Møller peaks.

The absolute Møller cross-section was also extracted at these three angles,
and compared with theory. The cross-sections were extracted by considering
the ratio between the electron-carbon and Møller rates. The rate measured by
the detector can be decomposed as:

Ri = �Ii�iei, (6.2)

where � is defined as the geometric, unchanging part of the luminosity such
that

L = �I =
�

�NAt
Mmolqe

�
I (6.3)

with I is the beam current. The cross-section is represented by �i, and the
detection efficiency as ei. The ratio of the electron-carbon and Møller rates can
then be expressed as

RM/Re =
IM

Ie

�M

�e

eM

ee
. (6.4)

The Møller cross-section can be extracted:
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Figure 6-6: Example of an even-odd dual-spline fit used to extract the
attenuation length. Only statistical errors are shown (efficiencies have
not yet been corrected).

�M = �e

�
RM

Re

��
Ie

IM

��
ee

eM

�
. (6.5)

The beam currents Ie and IM are provided by the Faraday Cup data. Two models
of calculating �e were considered: with and without radiative corrections. The
model presented in [1] was used for the non-radiative estimates. The modified
OLYMPUS electron-proton radiative generator, mentioned earlier, was used
for the radiative-corrected model [37].

The values of ee and eM were estimated from the Monte Carlo simulation by
comparing the predictions of the raw generator and full Geant4 simulation. It
should be noted that this estimation has a nonzero dependence on the detector
threshold set in Geant4, with no principled way to assign a quantitative error.
This is exacerbated by the high threshold required by the noisy amplifier/dis-
criminator cards (with which the simulations must match as best as possible),
since the effect is larger at higher thresholds. A future iteration of the experi-
ment should aim to better constrain this quantitatively, or circumvent the issue
with quieter cards.

Figures 6-18 and 6-19 show the extracted cross-sections. Comparisons
are shown between the data (extracted with the radiative and non-radiative
electron-carboncross-sections) andboth thenon-radiative and radiative-corrected
Møller theory. At all three angles, reasonable agreement is observed. All three
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Figure 6-7: Recovered efficiency parameters compared with truth, for a
toy model. The distributions have been normalized.
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Figure 6-8: Raw constructed “flat” hit map used for efficiency recon-
struction (linear color scale).

cross-sections are on the order of 1010 pb/° (integrated over 2� in �).

6.5 Discussion and Future Directions

The data acquired show good agreement with the predictions of the new ra-
diative theoretical calculation. The shape of the spectra at 30°, 35°, and 40°
are well-described: this was the primary goal set out at the beginning of this
experimental effort. Some deviations from the general trend are seen in the 30°
comparison, although these fall within the error bars. Future iterations of this
experiment should be able to improve upon the precision of this measurement.

Figure 6-20 shows a comparison between Geant4 simulations with the
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Figure 6-9: Recovered “flat” hit map after efficiency reconstruction (lin-
ear color scale).
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Figure 6-10: Raw hit data at 30° (linear color scale).
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Figure 6-11: Recovered hit data at 30° (linear color scale).
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Figure 6-12: Simulated hit data at 30° (linear color scale).
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Figure 6-13: Normalized rate as a function of beam current.

radiative generator and with the non-radiative generator, at the single central
values of the beam parameter scan at 30°. The comparison is shown for both
nominal beam emittance, and a low beam emittance (characterized by no an-
gular spread at the target). Small differences between the spectra are visible,
although they are much more obvious with lower beam angular spread. It
follows that even if we were to understand the systematics perfectly, i.e. no un-
certainty in the beam angle, beam energy, target thickness, or beam emittance,
it would still be quite difficult to see a difference between the radiative and
non-radiative spectra. Only with significant improvements to the apparatus
would the differences become apparent.

As a result, an initial area upon which to focus is the beam emittance. Ef-
fects due to target multiple scattering and beam angular spread are among the
biggest effects blurring the measured spectrum. The installation of an upstream
collimator could help to reduce both the beam spot size and the angular spread.
An additional significant effect is the distance between the focal plane detector
and the associated Kapton vacuum window. A future iteration of the detector
could be constructed to fit closer to the window, thus reducing the lever arm on
multiple scattering effects. Simulations have shown that replacing the air with
a helium bag would not significantly reduce these effects; they are really a result
of multiple scattering in the window. A measurement at higher beam energy
would also help to mitigate these effects. In order to substantially improve the
precision of this measurement, many of these facets will need to be addressed.
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Figure 6-14: Data versus simulation at 30°.

1.15 1.2 1.25 1.3 1.35 1.4 1.45

Cr
os
s
Se
ct
io
n
[l
in
ea
ra

u]

Momentum [MeV/c]

Møller Data vs Simulation: 35°

Simulation
Data

Figure 6-15: Data versus simulation at 35°.
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Figure 6-16: Data versus simulation at 40°.
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Figure 6-17: Full-scale momentum spectrum at 30°, showing the Møller
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Appendix A

DAQ and TDC Software Documentation

A.1 DAQ Code Documentation

The following section describes the various classes (•) and methods (•) pro-
vided by the DAQ software. Section A.4 shows an example run script.

• cdef class PyDAQ
The data acquisition chain is controlled by this class.

• def __init__(self, Reader, Processor, Detector)
PyDAQ must be instantiated with a Reader, Processor, and Detector.

• cpdef void PlotToPlotly(self)
Display output using plot.ly

• cpdef void PlotAsASCII(self)
Display output in the terminal.

• cpdef void StartReader(self)
Begin reading in raw data.

• cpdef void StartProcessor(self)
Begin processing data into events.

• cpdef void StartDetector(self, float accTime)
Begin processing events into hit locations.
The variable accTime sets the refresh rate.

• cpdef void Stop(self)
Stop acquiring data.
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A.1.1 Readers

• cdef class BufferReader
This reader is used when decoding the FIFO buffer.

• def __init__(self, str fName, str lfName,
str outFileName, double dt)
The arguments are:
fName Input buffer file path.
lfName Output log file path.
outFileName Output PyTables file path.
dt Artificial channel deadtime (to suppress oscillation hits).

• cpdef void NoSeek(self)
Read from the end of the buffer rather that the top. Set this only
when reading from a test buffer file.

• cpdef void readDataStream(self, hitBuffer)
Internal—contains the main decode loop.

• cpdef void Start(self, hitBuffer)
Internal—starts threading of the main loop.

• cpdef void Stop(self)
Internal—stops the thread.

• cdef class TCPReader
This reader is used when decoding a TCP/IP stream.

• def __init__(self, addr)
Must be instantiated with the IP address of the incoming stream.

• cpdef void readDataStream(self, Processor)
Internal—contains the main decode loop.

• cpdef void Start(self, Processor)
Internal—starts threading of the main loop. No Stop mechanism has
been written yet.

A.1.2 Processors

• cdef class DirectProcessor
A minimal processor that shuttles hits from the raw buffer to the Detector.

• def __init__(self)
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• cpdef void setup(self)
Internal—reset.

• cpdef void readStreamData(self, int channel, double hitTime)
Internal—adds the channel–time pair to the stack.

• cpdef void processStream(self, buffer)
Internal—the main loop that reads from the raw buffer.

• cpdef list getHits(self)
Internal—called by the Detector to pull off hits.

• cpdef void Start(self, buffer)
Internal—starts threading of the main loop.

• cpdef void Stop(self)
Internal—stops the thread.

• cdef class CoincidenceProcessor
This processor evaluates coincidences.

• def __init__(self, double CoincidenceWindow)
Must me instantiated with the desired coincidence window.

• cdef void setup(self, double CoincidenceWindow)
Internal—reset.

• cpdef void readStreamData(self, int channel, double hitTime)
Internal—adds the channel–time pair to the stack.

• cpdef void processStream(self, buffer)
Internal—the main loop that reads from the raw buffer

• cpdef list getHits(self)
Internal—called by the Detector to pull off sets of coincidence hits.

• cpdef void Start(self, buffer)
Internal—starts threading of the main loop.

• cpdef void Stop(self)
Internal—stops the thread.

A.1.3 Detectors

• cdef class DirectTileArray
A minimal detector that displays all tiles that have been hit.
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• def __init__(self)

• cpdef tuple checkHit(self, int ch)
Internal—checks that the channel maps to a physical tile, and if so,
returns its location.

• cpdef void SetHistory(self,double frac)
Sets howmuchof the previous frame is displayed on the next. Useful
for switching between real-time and long-term accumulation.

• cpdef tuple processHits(self, hits)
Internal—processes a list of channels.

• cdef class CoincidenceTileArray
A detector that displays coincidence coordinates.

• def __init__(self)

• cpdef tuple checkPair(self, int ch1, int ch2)
Internal—checks that the channels map to physical tiles, and that
they are in different planes. If so, it returns their locations.

• cdef tuple getCoordinates(self, int topCh, int bottomCh)
Internal—converts two channels to a physical hit coordinate.

• cpdef void SetHistory(self,double frac)
Sets howmuchof the previous frame is displayed on the next. Useful
for switching between real-time and long-term accumulation.

• cpdef tuple processHits(self, channelLists)
Internal—process lists of coincidence-matched channels.

• cdef class ChannelRates
A “detector” that prints the channel rates to the terminal.

• def __init__(self)

• cpdef np.ndarray processHits(self, hits)
Internal—accumulates hit rates by channel number.

A.1.4 Internal / Auxiliary

• class DataStorage(IsDescription)
Internal—this defines the data structure of the PyTables file.

• class GlobalHeader(IsDescription)

134



– EventID = Int64Col()

– GEO = Int64Col()

• class EventData(IsDescription)

– Channel = Int64Col()

– ShortTime = Int64Col()

– Trailing = Int64Col()

• class ETTT(IsDescription)

– ExtendedTime = Int64Col()

• class GlobalTrailer(IsDescription)

– Status = Int64Col()

– WordCount = Int64Col()

– GEO = Int64Col()

• cdef class EventBuilder
Internal—this is used to help construct sets of hits from the FIFO buffer’s
bunch information.

• def __init__(self)

• def AddEvent(self, channel, time, trailing)

• def GetEvents(self)

• def Sort(self)
Arranges the hits sequentially in time. This is required because they
are not necessarily written to the buffer in correct temporal order.
The Processors will not function properly if the hits are not ordered.

• def Clear(self)

• cdef class HitBuffer
Internal—holds the raw hits and shuttles them between the Reader and
the Processor.

• def __init__(self)

• cpdef void setup(self)

• cpdef list getRawHits(self)

• cpdef void AddHit(self,ch,time)
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• def SaveBuilder(builder,entry)
Internal—this saves the content in the event builder to an entry in the
PyTables file.

• def ProcessStream(hitBuffer,builder)
Internal—this passes the content in the event builder to the raw hit buffer.

• cpdef void line(np.ndarray cols, term, int x, int y)
Internal—prints a line of the hit map to the terminal.

• cpdef void print_array(np.ndarray arr, term, int x, int y0)
Internal—prints the hit map to the terminal.

A.2 File Documentation

The above classes and methods are arranged in the following files.

A.2.1 Readers.pyx

• TCPReader

• BufferReader

• DataStorage

• EventBuilder

• SaveBuilder

• ProcessStream

A.2.2 Detectors.pyx

• DirectTileArray

• CoincidenceTileArray

• ChannelRates

A.2.3 Processors.pyx

• DirectProcessor

• CoincidenceProcessor
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A.2.4 Display.pyx

• line

• print_array

A.2.5 PyDAQ.pyx

• PyDAQ

• HitBuffer
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A.3 Example TDC configuration script

#/bin/bash

modprobe vme_ca91cx42 geoid=1
modprobe vme_vmivme7805

cd /usr/src/vmedrivers/v1190
make -j && insmod v1190.ko addr=0x1111
cd ..

#This sets the following trigger parameters:
#matchwindowwidth windowoffset

extrasearchwindowwidth rejectmargin trigtimesubenabled
echo0x7F00xF8100x080x020x00> /sys/bus/vme/devices/v1190.0-0/trigger
sleep 1

#This sets bits 5, 9, and 11 to the control register.
#Bit 5: integral nonlinearity compensation. Bits 9&11: ETTT
echo 0xa20 > /sys/bus/vme/devices/v1190.0-0/ctrl
sleep 1

#This disables the TDC Header and Trailer during readout
echo 0x3100 > /sys/bus/vme/devices/v1190.0-0/uC
sleep 1

#This sets the max number of hits per event.
#0x0009 means 1001 = unlimited.
echo 0x3300 > /sys/bus/vme/devices/v1190.0-0/uC
echo 0x0009 > /sys/bus/vme/devices/v1190.0-0/uC
sleep 1

#1 sets Trigger Matching Mode. 0 sets continuous storage mode
echo 1 > /sys/bus/vme/devices/v1190.0-0/storage_mode
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A.4 Example Run Script

A basic minimum working example follows. This is a simplified version of what
appears in RunDAQ.py.

#!/usr/bin/env python
from RadMollerPyDAQ import *
import sys, os
import signal

HISTORY = 0
COINCIDENCE_WINDOW = 2 #ns
ACC_TIME = 1.0 #s
BUFFER_PATH = "/sys/bus/vme/devices/v1190.0-0/data"
OUTPUT_FILE = "output.pt"
DEADTIME = 1000.0 #ns

Processor = CoincidenceProcessor(COINCIDENCE_WINDOW)
Detector = CoincidenceTileArray()
Reader=BufferReader(BUFFER_PATH,"logfile1.txt",OUTPUT_FILE,DEADTIME)

Detector.SetHistory(HISTORY)

DAQ = PyDAQ(Reader, Processor, Detector)
DAQ.PlotAsASCII()

#This is to correctly map ctrl-c to stop the DAQ
def signal_handler(*args):

DAQ.Stop()
os.system('cls' if os.name == 'nt' else 'clear')
sys.exit()

signal.signal(signal.SIGINT, signal_handler)

DAQ.StartReader()
DAQ.StartProcessor()
DAQ.StartDetector(ACC_TIME)
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Appendix B

Software Development

B.1 The QSquared Data Analysis Toolkit

The QSquared data analysis toolkit was developed in order to support the work
described in this thesis. However, it may be of use to the general community.
QSquared is a set of extensions to existing data analysis packages, on which
it is dependent, including ROOT, zodb, numpy, and Gnuplot. The extensions
are intended to be useful for the average high-energy physics user, and include
pythonic versions of objects like 3- and 4-vectors, 1D and 2D histograms, and
some basic data structures and File IO. The emphasis is on ease of use, speed,
and storage efficiency. Some highlights include:

• Code acceleration via Cython compilation, when appropriate

• 1D and 2D histogram classes with C back-end

• Direct interface with Gnuplot: allows histograms to be saved easily to a
publication-quality PDF

• Various data structures (Histograms, Series, Line, etc)

• Fast and space-efficient object storage via the ZODB database back-end
and using zc.zlibstorage compression

• Easy conversion from ROOT histograms to QSquared histograms

• Easy conversion of ROOT files to QSquared QFiles; more and more ROOT
object formats are being supported as time goes on

• Easy interface with ROOT trees, etc, and conversion to QFiles

• Easy unit conversions and unit cancellation (factor-label). User can edit
external units file.

• Uncertainty arithmetic and propagation
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• PDG information about elementary particles, easy to access their mass,
width, etc.

• Optional plotting Canvas with various automated plotting tools

• Various histogram color schemes available. The default is veridis from
matplotlib, which is grayscale- and colorblind-safe. For 2D plots, a
custom perceptually uniform color scheme is used.

• Beamer interface and utilities for generating slides out of plots made with
QSquared

B.2 GDML Generation in Python

One way to prepare an experiment’s geometry for Geant4 simulations is to
encode it in an XML-based GDML file. GDML provides a number of benefits
to the user over hard-coded C++ (e.g. portability), but coding it directly is
error-prone and requires dealing with complicated syntax. Colton O’Connor
assembled software to allowGDMLfiles to be generated fromplain-text human-
readable files. We have extended his software and produced a Python interface
for preparing GDML files. The result allows complex geometries to be created
using the simple syntax and object-oriented simplifications available to Python.

Some of the notes below will refer to items that are specific to the implemen-
tation for the Radiative Møller experiment. However, with proper renaming
and rewriting, the framework could be used for any setup.

B.2.1 General Workflow

1. Code geometry using Python classes.

2. Execute Python program to generate GDML files.

B.2.2 Overview of File Contents

Python Front-End Interface

Files providing the front-end:

• GDML_Shapes.py

– Contains code for the Python implementations of various geometric
objects.

• GDML_Util.py
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– Contains various utility functions that may be useful in coding the
geometry.

• procGDML.py

– This file runs all of the scripts necessary to generate GDML from a
Python-coded model.

Plain-Text to GDML Converter

Colton’s plain-text to GDML converter contains a number of files:

• generateGDML.py

– This is the main file, in which the input and output filenames are
specified.

• materials.txt

– Various material definitions are stored here.

• gdmlModule.py

• olympusWriter.py

• writer.py

B.2.3 Classes and Methods

Geometry Classes

• Box(name, dx, dy, dz)

• Tube(name, rmin, rmax, z, startphi, deltaphi)

• SubtractionSolid(name, solidA, solidB, pos=[0,0,0], rot=[0,0,0])

There are two other types of solids that have the same structure:

– UnionSolid(...)

– IntersectionSolid(...)

• Trapezoid(name, dx1, dx2, dy1, dy2, dz)

• Cone(name, z, rmin1, rmin2, rmax1, rmax2, sphi, dphi)

• EllipticalTube(name, x, y, z)

• UnionChain(objs)
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– An object that helps if you want to Union together a number of
objects. Put them in a list and pass it as the argument toUnionChain
and it will return an object representing the Union of the objects in
that list.

Other stuff

• Object (generic base class)

• Detector(prefix, objs=[])

– The main container class into which objects are (automatically)
placed.

Auxiliary Definitions

Functions:

• CopyObject(obj)

– Makes an implementation-safe copyof anobject andappends"_copy"
to the name (this can later be changed)

• degToRad(x)

– Degrees to radians

• radToDeg(x)

– Radians to degrees

• sqrSum(l)

– Returns the square-root of the sum of the squared values in list l

• PolarPosition(r, angle, height)

– Returns a list containing the x-y-z coordinates corresponding to the
cylindrical coordinates r, angle (degrees), and height

• RotateX(pos, angle)

– Returns a rotated list of coordinates corresponding to those in pos
rotated around X by angle

• RotateY(pos, angle)

– Same; Y axis
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• RotateZ(pos, angle)

– Same; Z axis

• XYZtoZYX(v)

– Akey function for placing objects rotated aboutmultiple axes. When
specifying SetRotation(...) the expected angles correspond to a
rotation around Z, then Y, then X. However, it may be useful to
describe rotations in the opposite direction. This function returns
the ZYX version of a rotation specified in XYZ order.

• minus(l)

– Returns a version of the list l with the signs of each element flipped

• subtract(l1, l2)

– Subtracts the list l2 from l1

• add(l1, l2)

– Adds the lists l1 and l2

Classes:

• Centers

– Useful for keeping track of the center positions of stacked objects

Important Geometry Class Methods

• Name()

– Returns the object’s name

• SetName(name)

– Set an object’s name to name

• SetVirtual()

– Set an object to be a placeholder, i.e., one that exists in the GDML
but is not physically in the geometry. For example, if it is just being
used as a block that is subtracted from another.

• UnsetVirtual()
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– Opposite of SetVirtual()

• IsVirtual()

– Returns true/false if an object is Virtual

• SetPosition([x, y, z])

– Set the physical position of the object to [x, y, z]. The default is [0, 0,
0].

• SetRotation([xr, yr, zr])

– Set the physical rotation of the object to [xr, yr, zr] (degrees). The
default is [0, 0, 0].

• GetPosition()

– Return an object’s position

• GetRotation()

– Return an object’s rotation

• SetMaterial(mat)

– Set an object’s material to mat, e.g. "G4_Al" (see materials.txt for
options)

• SetColor(color)

– Set an object’s color; the default is "t663675714"

• SetSensitive()

– Set an object to be a sensitive detector

• FillVacuum()

– For objects that have an inner volume (e.g. tubes), this will return an
object made of "G4_Galactic" that fills the inner volume and has
the same position/rotation as the parent volume.
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B.2.4 Project Structure

Begin the main detector file (in this case MollerDetector.py) with these lines:

from __future__ import division
from PyGeoGDML import *

Then, initialize a detector; for example:

MollerExp = Detector("Moller")

Here, “Moller” will be the output text-file prefix. Then, provide this instance
to the base Object class by calling:

SETEXPERIMENT(MollerExp)

The point of this is that now all new instances of Object-derived classes will
carry a reference to the Detector and can place the object in the geometry
without extra lines of code.
Now define the geometry. For example:

A_BOX = Box("BoxName", 2, 3, 4)
A_BOX.SetMaterial("G4_Al")
A_BOX.SetPosition([1, 2, 3])
A_BOX.SetRotation([0, 25, 0])

At the end of the file, save the Detector by calling:

MollerExp.Save()
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