Radiative Møller Scattering with DarkLight

Ethan Cline

DarkLight Collaboration Meeting, MIT November 16, 2023

Møller Scattering

- Møller scattering is background or luminosity measurement in many experiments
- Radiative Møller scattering not measured to high precision
- Test size and validity of radiative corrections

Lowest order Møller scattering diagrams

DarkLight at ARIEL

DarkLight at ARIEL

- DarkLight Experiment at ARIEL uniquely suited to test radiative Møller scattering
- Two fixed angle spectrometers: 20° and 36°
- 20% momentum acceptance
- 1 $\mu{\rm m}$ C target, 10 $\mu{\rm A}$ current
- Variable beam energy (30 10 MeV)
- Have the Epstein-Milner $ee \rightarrow ee\gamma$ event generator, Phys. Rev. D 94, 033004

$$\begin{aligned} \frac{d\sigma}{d\Omega} &= \frac{\alpha^2}{2s} \bigg\{ \frac{1}{t^2} (s^2 + u^2 - 8m^2(s+u) + 24m^2) \\ &+ \frac{1}{u^2} (s^2 + t^2 - 8m^2(s+t) + 24m^4) \\ &+ \frac{1}{tu} (s^2 - 8m^2s + 12m^4) \bigg\} \end{aligned}$$

Note: mass not negligible for these energies

Kinematics

Energy vs scattering angle, 30 MeV to 10 MeV from top to bottom in steps of 5 MeV

Energy too low for 36° spectrometer, but could be used for luminosity measurement

Cross Section and Count Rate

Left: Cross Section as a function of scattering angle. **Right:** Count rate, folding in acceptance, as a function of scattering angle. Lowest energy corresponds to highest rate.

Timing resolution determined by GEM detectors. Multi-frame readout allows us to distinguish events 100 ns apart, leading to 10 MHz maximum rate. Using Ta here would increase rate by \approx 100x.

Background Processes

- Elastic carbon scattering is at \approx 30 MeV
 - Initial indication is $d\sigma/d\Omega$ is \approx Møller
 - Would need to be far down in radiative tail to not worry about background, not sure where we sit
 - Not sure about the background rate from elastics that make it into the spectrometer
- Carbon has several relevant low lying nuclear states
 - 4.4 MeV 30 MeV
 - · Need to check cross sections of these states, but lower than elastics
- Quasi-elastic scattering needs to be studied
 - Written simple Geant4 MC to test the energy distribution of these states

Radiative Events

Diagrams courtesy of Charles Epstein Slide courtesy of Douglas Hasell

Generated Events

- Run EM generator for 1 M events
- Set generator to have 3/4 events radiate
- Minimum photon energy is 1E-4 MeV
- $E_{\rm Beam} = 30 \text{ MeV}$
- Accept events that end up within $18.5^\circ < \theta < 21.5^\circ$
- "Default" settings

Angular Distribution

Assuming nominal ± 1.5 degree nominal θ acceptance

Energy Distribution

Assume we have 0.5° bins.

Energy Distribution

Red line indicates central momentum, blue lines indicate acceptance.

Energy Distribution

Six bins for each energy with a 30 MeV beam.

Questions

- Can we have our thin carbon target and low current?
- Want two GEMs to form tracks, will they be instrumented together?
- What is p_{\min} that will make it into our spectrometers?
- Can we use the other spectrometer for something if no GEMs?
- Will we have trigger scintillators for both spectrometers?

Outlook

- At each momenta we can do six measurements assuming 0.5° binning
- At lower momenta, picture does not change from what I've shown except the energy range becomes compressed
- Depending on p_{\min} , maybe able to reduce p_{central} and do several measurements
- "Nominal" measurement is 30 spectra, six bins \times five energies
- Lower current than 10 μ A is great!