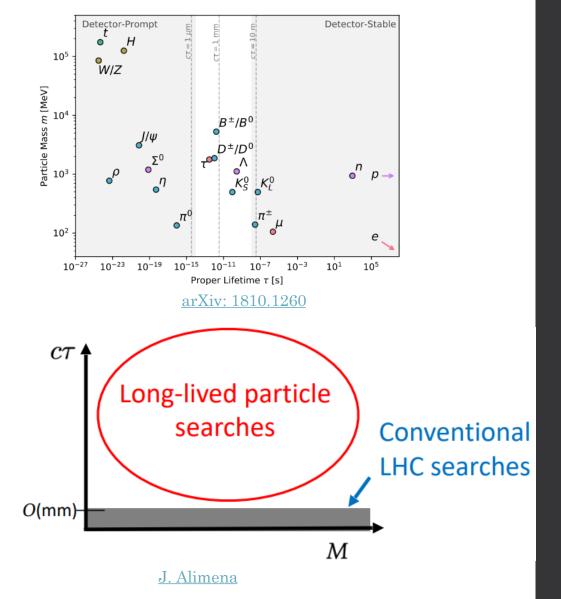


Long-Lived Particles at FCC-ee with IDEA, CLD Detectors

Mark Larson, Louise Skinnari

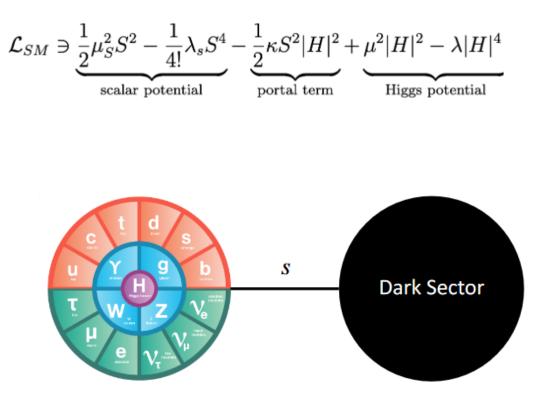

Northeastern University

US FCC Workshop, March 26, 2024

LLPs at the FCC-ee

• Long-lived particles (LLPs):

- Particles w/ decay length resolvable in detector, achieved by small couplings, often leave **displaced signatures**
- Motivated by numerous open questions, BSM theories
- Experimental challenges of LLP searches:
 - Detectors, triggers, offline reconstruction and subsequent searches are generally designed for **prompt** decays
- Advantages of FCC-ee LLP searches:
 - $\cdot \ {\rm Clean\, experimental\, signatures}$
 - Few trigger limitations and high luminosity
- <u>Initial studies</u> have motivated further studies:
 - Heavy Neutral Leptons (HNLs)
 - Axion-like Particles (ALPs)
 - \cdot Scalar LLPs from exotic Higgs decays

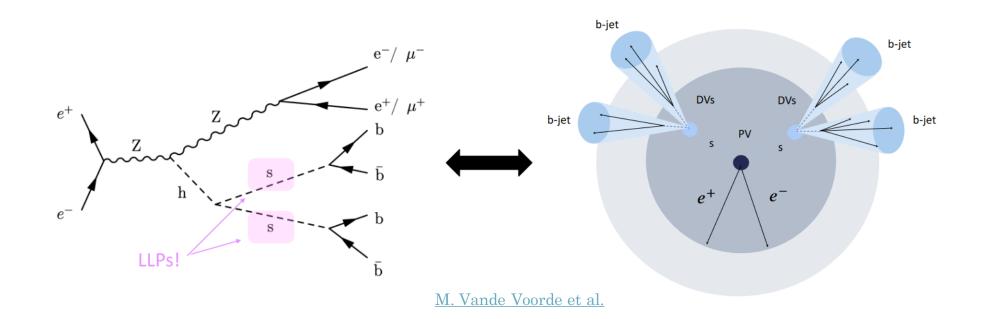


Long-lived scalars from exotic Higgs decays

- Consider a SM + scalar model (arXiv:1312.4992, arXiv:1412.0018)
- Scalar acts as portal between SM and dark sector (e.g., Dark Matter)
- Higgs and scalar coupled by κ , Higgs and scalar mix with angle $sin(\theta)$

 $\Gamma(s \to X_{\rm SM} X_{\rm SM}) = \sin^2 \theta \ \Gamma(h(m_s) \to X_{\rm SM} X_{\rm SM})$

 → scalar inherits coupling to SM particles from mixing, so for sufficiently small mixing will be long-lived


Based on work by Magdalena Vande Voorde, Giulia Ripellino, Axel Gallén, Rebeca Gonzalez Suarez, link to recent talk

Production at FCC-ee

• Targeting **240 GeV**, *Zh* production stage of FCC-ee w/ signal process:

$$e^+e^- \rightarrow Z h$$
 with $Z \rightarrow e^+e^-$ or $\mu^+\mu^-$ and $h \rightarrow ss \rightarrow b\bar{b}b\bar{b}$

- This provides following experimental signatures:
 - **Reconstructed Z boson** from e^+e^- or $\mu^+\mu^-$ pairs
 - **Displaced vertices** from b pairs from long-lived scalar decay

Signal Generation and Selection

- Generated new CLD samples with <u>CLD-like Delphes Card</u> (<u>IDEA</u> card w/ tracker geometry replaced by <u>CLD</u> tracker geometry), IDEA samples (from previous analysis) used <u>Winter2023 IDEA Delphes card</u>
 - Using MadGraph v3.5.3 (3.4.2 for IDEA samples) + Pythia8 + Delphes
 - 6 separate samples generated based on varied scalar mass, mixing angle

Mass of Scalar	Mixing angle	Mean proper	
m_S [GeV]	$\sin \theta$	lifetime $c\tau~[\rm{mm}]$	
20	1×10^{-5}	3.4	
20	1×10^{-6}	341.7	
20	1×10^{-7}	34167.0	
60	$1 imes10^{-5}$	0.9	
60	1×10^{-6}	87.7	
60	1×10^{-7}	8769.1	

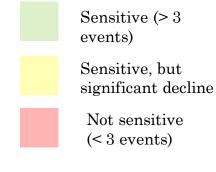
• Event selection (from previous analysis):		Selection
 Note: DV cut rejects all background events from WW, ZZ, ZH processes 	Pre-selection Z boson tag Multiplicity of DVs	≥ 2 oppositely charged electrons or muons $70 < m_{ll} < 110 \text{ GeV}$ $n_{\rm DVs} \geq 2$

Preliminary IDEA vs. CLD Results

• Applying cuts yielded following efficiencies for IDEA and CLD samples:

		$20~{\rm GeV},1\text{e-}5$	$20~{\rm GeV},1\text{e-}6$	$20~{\rm GeV},1\text{e-}7$
	Before Selection	1.0	1.0	1.0
	Pre-selection	0.957	0.950	0.949
	$70 < m_{ll} < 110~{\rm GeV}$	0.888	0.888	0.900
IDEA:	$N_{DVs} \ge 2$	0.091	0.672	0.014
		60 GeV, 1e-5	60 GeV, 1e-6	60 GeV, 1e-7
(from previous	Before Selection	1.0	1.0	1.0
analysis by Magda	Pre-selection	0.957	0.957	0.951
Vande Voorde, et al.)	$70 < m_{ll} < 110 { m ~GeV}$	0.894	0.895	0.896
vande voor de, evan y	$N_{DVs} \ge 2$	0.0002	0.672	0.398

CLD:

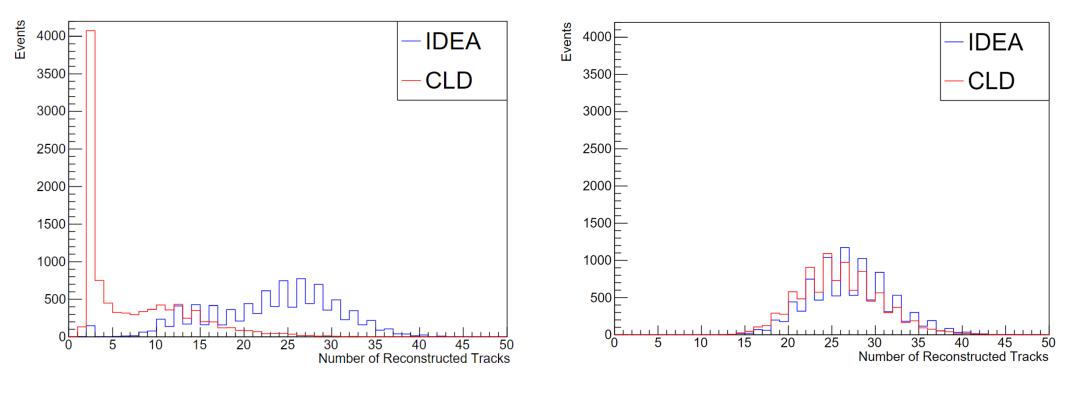

Signal Cut flow efficiencies:

Signal Cut flow efficiencies:

	20 GeV, 1e-5	20 GeV, 1e-6	20 GeV, 1e-7
Before Selection	1.0	1.0	1.0
Pre-selection	0.955	0.952	0.952
$70 < m_{ll} < 110 \text{ GeV}$	0.891	0.896	0.903
$N_{DVs} \ge 2$	0.092	0.109	0.002
	$60~{\rm GeV},1\text{e-}5$	60 GeV, 1e-6	60 GeV, 1e-7
Before Selection	1.0	1.0	1.0
Pre-selection	0.958	0.958	0.952
$70 < m_{ll} < 110 \text{ GeV}$	0.895	0.897	0.899
$N_{DVs} \ge 2$	0.0002	0.654	0.0502

Events selected:

$m_s, \sin heta$	$n_DVs \geq 2$
20 GeV, 1e-7 60 GeV, 1e-5	5.0 ± 0.166 37.1 ± 0.453 0.8 ± 0.067 0.0033 ± 0.0023 10.96 ± 0.167 6.49 ± 0.103


Events selected:

Note:	given	1.46	×	10°	Zhe	vent	S

		Mean proper
$m_s, sin heta$	$n_{\rm DVs} \ge 2$	lifetime $c\tau$ [mm]
20 GeV, 1e-5	5.10 ± 0.167	3.4
20 GeV, 1e-6	6.02 ± 0.182	341.7
20 GeV, 1e-7	0.11 ± 0.025	34167.0
60 GeV, 1e-5	0.003 ± 0.0023	0.9
$60 {\rm GeV}, 1e-6$	10.67 ± 0.132	87.7
$60~{\rm GeV},$ 1e-7	0.819 ± 0.036	8769.1

Tracking Performance: IDEA vs. CLD

Longer decay length CLD sample saw reduction in # reco. tracks, shorter decay length CLD sample saw similar # reco. tracks

 $m_s = 20 \text{ GeV}, \sin(\theta) = 1e - 6, c\tau = 341.7 \text{ mm}$ sample saw significant decline in sensitivity $m_s = 20 \text{ GeV}, \sin(\theta) = 1e - 5, c\tau = 3.4 \text{ mm}$ sample saw similar sensitivity

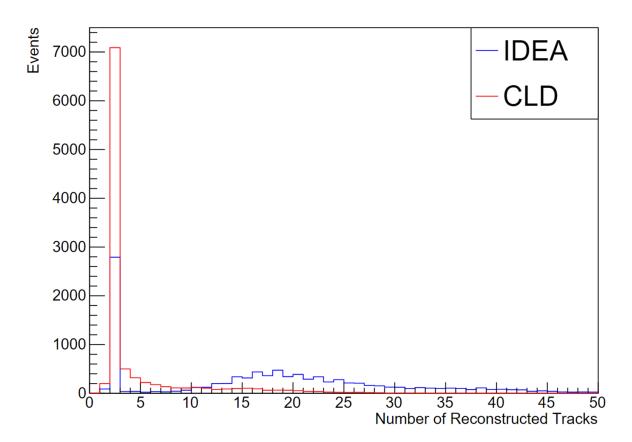
Summary and Future Work

- Have generated preliminary results comparing sensitivity to LLPs using IDEA, CLD tracker geometries
- Initial results indicate similar performance for low displacements, while signal points with larger displacement show significant difference in reconstructed tracks and hence sensitivity

• Detector Comparison:

- Further studies of LLPs tracking and vertexing with IDEA, CLD cards
- Use full simulation to compare IDEA, CLD cards

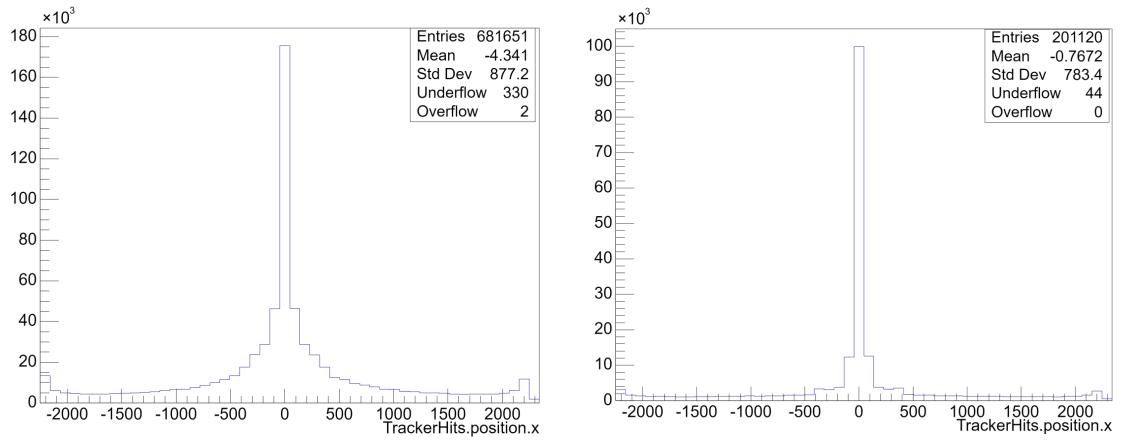
• Extending original analysis:


- \cdot Incorporate hadronic decay modes of Z boson to increase statistics
- Apply Machine Learning techniques to improve signal sensitivity and background rejection

Backup

Tracking Performance: IDEA vs. CLD

• $m_s = 60 \text{ GeV}, \sin(\theta) = 1e - 7, c\tau = 8769.1 \text{ mm}$ sample saw significant decline in sensitivity


• Supports evidence for poor CLD tracking performance with longer decay lengths

Tracker Hits: $m_s = 20 \text{ GeV}, \sin(\theta) = 1e - 6, c\tau = 341.7 \text{ mm}$ sample

IDEA:

