

FUTURE CIRCULAR COLLIDER

What can we say about the Higgs self-coupling with the hadronic ZH process at FCC-ee?

Haider Abidi, Elizabeth Brost, George lakovidis, Abraham Tishelman-Charny, Iza Veliscek

March 26th, 2024

abraham.tishelman.charny@cern.ch

Higgs self-coupling

• The **Higgs self-coupling**: Impacts shape of **Higgs potential**, key to understanding the Higgs mechanism.

Higgs self-coupling

- The **Higgs self-coupling**: Impacts shape of **Higgs potential**, key to understanding the Higgs mechanism.
- Want a precise measurement
 - Fundamental test of **SM**, use to search for **BSM**

Higgs self-coupling

- The **Higgs self-coupling**: Impacts shape of **Higgs potential**, key to understanding the Higgs mechanism.
- Want a **precise** measurement
 - Fundamental test of **SM**, use to search for **BSM**
- Estimated precision at HL-LHC:
 ~50% (conservative) w/ Higgs pair production

• Estimated precision at FCC-hh: ~5%

collider	single-H	HH	combined
HL-LHC	100-200%	50%	50%
CEPC ₂₄₀	49%	_	49%
ILC ₂₅₀	49%	_	49%
ILC ₅₀₀	38%	27%	22%
ILC ₁₀₀₀	36%	10%	10%
CLIC ₃₈₀	50%	_	50%
CLIC_{1500}	49%	36%	29%
CLIC ₃₀₀₀	49%	9%	9%
FCC-ee	33%	-	33%
FCC-ee (4 IPs)	24%	_	24%
HE-LHC		15%	15%
* FCC-hh	-	5%	5%

These values are combined with an independent determination of the self-coupling with uncertainty 50% from the HL-LHC.

Sally Dawson, Caterina Vernieri @ LHC Higgs Working Group, December 3, 2021

***** <u>arXiv:2004.03505</u> 2.9-5.5% depending on the systematic assumptions

Self-coupling access at FCC-ee

- HH production turns on at e⁺e⁻ collider:
 - √s ~500 GeV for ZHH
 - Even higher for HHvv

Self-coupling access at FCC-ee

- HH production turns on at e⁺e⁻ collider:
 - √s ~500 GeV for ZHH
 - Even higher for $HH_{\nu\nu}$
- FCC-ee \s too low (90 365 GeV) to produce pairs of Higgs bosons directly

Self-coupling access at FCC-ee

- HH production turns on at e⁺e⁻ collider:
 - √s ~500 GeV for ZHH
 - Even higher for HHvv
- FCC-ee √s too low (90 365 GeV) to produce pairs of Higgs bosons directly
- Indirect sensitivity from higher order contributions to ZH (main production mode)

- Using Winter 2023 samples at 240 GeV
 - Uses Whizard/pythia, delphes simulation of IDEA detector

- Using <u>Winter 2023</u> samples at 240 GeV
 - Uses Whizard/pythia, delphes simulation of **IDEA** detector
- ZH signal → Fully-Hadronic for maximum Z cross-section:
 - Z(bb, cc, qq, ss)
 H(bb, cc, gg, ss, ττ, WW, Zy, ZZ)
 q = (u, d)

- Using Winter 2023 samples at 240 GeV
 - Uses Whizard/pythia, delphes simulation of **IDEA** detector
- ZH signal → Fully-Hadronic for maximum Z cross-section:
 - Z(bb, cc, qq, ss)
 H(bb, cc, gg, ss, ττ, WW, Zy, ZZ)
 q = (u, d)
- Background processes:
 ZZ, WW, Zqq

- Using <u>Winter 2023</u> samples at 240 GeV
 - Uses Whizard/pythia, delphes simulation of **IDEA** detector
- ZH signal → Fully-Hadronic for maximum Z cross-section:
 - Z(bb, cc, qq, ss) H(bb, cc, gg, ss, ττ, WW, Zy, ZZ) q = (u, d)
- Background processes:
 ZZ, WW, Zqq

Durham kt algorithm, require 4 jets

Same event, two interpretations!

Selections

• Use selections from ZH analysis designed for **Higgs hadronic coupling measurements**: Haider Abidi, George Iakovidis, Iza Veliscek [Annecy talk], [MIT talk]:

Selections

- Use selections from ZH analysis designed for **Higgs hadronic coupling measurements**: Haider Abidi, George Iakovidis, Iza Veliscek [Annecy talk], [MIT talk]:
- $N_{iets} == 4, \le 2$ leptons \rightarrow Select expected final state particles
- Selections on clustering distance parameter:
- For each jet, tag flavor based on highest ParticleNet flavor score among {b, c, s, d, u, g, τ}
 - Ignore events with 4 different flavor tagged jets (small percentage)

$$\sqrt{(m_{z_{jj}} - m_W)^2 + (m_{H_{jj}} - m_W)^2} > 10, \sqrt{(m_{z_{jj}} - m_Z)^2 + (m_{H_{jj}} - m_Z)^2} > 10$$

Remove WW
Remove ZZ

• $50 < m_{Z_{jj}} < 125 \text{ GeV}, m_{H_{jj}} > 91 \text{ GeV} \rightarrow Minimize H/Z faking Z/H$

Parameter [GeV] ²	min	max
d ₁₂	15000	58000
d ₂₃	400	18000
d ₃₄	100	6000

Categorization

 Categorize events by pair flavor scores with different purity categories

	bb, cc, gg	SS
Low	< 1.1	< 0.8
Medium	[1.1, 1.8]	[0.8, 1.4]
High	> 1.8	> 1.4

Categorization

- Categorize events by pair flavor scores with different purity categories
- Example: H_{bb} process reco Higgs mass vs. reco Z mass
- Aim to maximize signal over background near Higgs, Z mass peaks

	bb, cc, gg	SS
Low	< 1.1	< 0.8
Medium	[1.1, 1.8]	[0.8, 1.4]
High	> 1.8	> 1.4

Self-coupling scan

- For each $\kappa_{\lambda} (\lambda / \lambda_{SM})$ value:
 - Scale ZH signal strength
 - Compute likelihood

7

Self-coupling scan

- For each $\kappa_{\lambda} (\lambda / \lambda_{SM})$ value: • Scale ZH signal strength
 - Compute likelihood
- Evaluate 1σ constraint on self-coupling as intersect points at 1
- Initial result: $\kappa_{\lambda} \in [0.2, 2.1]$ at 1σ

Self-coupling scan

- For each $\kappa_{\lambda} (\lambda / \lambda_{SM})$ value: • Scale ZH signal strength
 - Compute likelihood
- Evaluate 1σ constraint on self-coupling as intersect points at 1
- Initial result: $\kappa_{\lambda} \in [0.2, 2.1]$ at 1σ
- Expect to improve with additional selections, can use as benchmark for detector optimization

Summary

- The Higgs self-coupling can be measured indirectly at the FCC-ee, hopefully with higher precision than at the HL-LHC
 - This measurement depends on defining a high sensitivity phase space, using data from runs at several center-of-mass energies

Summary

- The Higgs self-coupling can be measured indirectly at the FCC-ee, hopefully with higher precision than at the HL-LHC
 - This measurement depends on defining a high sensitivity phase space, using data from runs at several center-of-mass energies
- Use Fully-Hadronic ZH process, flavor tagging [ref.], obtains expected self-coupling constraint
 - $\kappa_{\lambda} \in [0.2, 2.1] \rightarrow$ To be improved with further selections
 - Will use as benchmark for detector optimization studies
 - Can combine with $Z(\ell \ell)H$ final states for more sensitive result
 - Also investigating optimal jet reclustering method \rightarrow See <u>Phil's talk</u>

Backup

Exclusive Durham k_t algorithm

M. Cacciari, G. Salam G. Soyez

- Combine low energy particles with neighbors
- Reiterate until you reach d_{cut} or n_{jets}

Simplest all-round decent e+e- algorithm the "exclusive" Durham kt algorithm

- determine $d_{ij} = 2\min(E_i^2, E_j^2)(1 \cos \theta_{ij})$ between each pair of particles i, j
- recombine i, j pair with smallest d_{ij} , and update all distances

stop when:

n_{jets} mode. you have reached a predetermined number of jets (e.g. n = 4 for $ZH \rightarrow q\bar{q}b\bar{b}$)

 d_{cut} mode. all remaining d_{ij} > some threshold (called d_{cut})

In " n_{jets} mode", you often want to look at what the next d_{ij} would have been and discard the event if it is below some threshold. Simple and effective.

In "d_{cut} mode", you usually make sure you have at least *n* jets for your process (e.g. 4 for $ZH \rightarrow q\bar{q}b\bar{b}$), otherwise discard the event. If you have more than *n* jets, decide whether to keep the event, and if so which jets to use.

d_{ij} distributions from similar analysis

Slide from George lakovidis:

Distributions on d_{ii} FCCAnalyses: FCC-ee Simulation (Delphes) FCCAnalyses: FCC-ee Simulation (Delphes) FCCAnalyses: FCC-ee Simulation (Delphes) _____ Z(oc) H(vv) Z(oq) H(Zz) Z(oq) H(Zz) Z(oq) H(ZZ) Zinti Hire 2(ss) H(H) 2(ss) H(Za) 2(ss) H(WW) 2(ss) H(ZZ) Z(se) H(Za) Z(se) H(WW Z(bb) H(Za) $\sqrt{s} = 240.0 Ge$ s = 240.0 GeV \s = 240.0 GeV 2(ss) H(22) (bb) H(ZZ) Zop $L = 5 ab^{-1}$ $L = 5 ab^{\circ}$ Z(pq) H(bb) ATA' e+e' → Z(ii) H(ii) Z(qq) H(gg) - Ziqq) H(oc) e*e → Z(ii Z(bb) H(m) Zibb) Higg) - Zibbi Hibbi - Zibbi Hisci (colH (col5 - Zigg) Hittel Zipsi Hibb - Zissi Hice Zibbi Higg) - Zibbi Hibb) - Zibbi Higg Roford C 10 10 10⁵ 10⁵ 10 10⁴ 10⁴ 10³ 10 10² 10 10 2000 4000 6000 8000 10000 12000 14000 16000 1000 2000 3000 4000 5000 6000 7000 8000 10000 20000 30000 40000 50000 60000 18000 d 12 d 23

🛜 Brookhaven[.]

National Laboratory

CERN

FUTURE

CIRCULAR

COLLIDER

d_34

9

Existing hadronic ZH analysis

- Extensive ZH analysis performed (240 and 365 GeV):
 - FCC physics performance meeting: [17 October 2022 Nico Härringer]
 - Documented as masters thesis: [CERN-THESIS-2022-143]
- Targets **leptonic** and **hadronic** Z decays, inclusive Higgs decays, VBF-H
- **Cut based** and **BDT based** analysis (depending on production mode / final state)
- Projected FCC-ee results include:
 - Higgs **mass** measurement
 - ZH, VBFH production cross-section measurements
 - Self-coupling constraint

Cross section parameterization

 Cross section parameterization as a function of kl

$$\sigma_{\mathrm{i,NLO}} = Z_H \sigma_{\mathrm{i,LO}} (1 + \kappa_{\lambda} C_{1,i}),$$

$$Z_H = \frac{1}{1 - \kappa_\lambda^2 \delta Z_H},$$

$$\delta Z_H = -\frac{9}{16} \frac{G_F m_H^2}{\sqrt{2}\pi^2} \left(\frac{2\pi}{3\sqrt{3}} - 1\right) \approx -0.00154.$$

Equations from Nico Härringer's masters thesis: [CERN-THESIS-2022-143]

$\sigma_{\sf kl}$

- ZH(bb) NLO/LO cross-section as a function of δ (kappa lambda)
- Cross-section falls off, leads to changing likelihood.

How to measure the Higgs self-coupling at the FCC-ee?

- The self-coupling measurement depends on measurements of Higgs production cross sections and decays to other particles.
- The κ analysis is expected to reach ~20% accuracy [arXiv:1905.03764], while the global effective field theory fit will reach ~30% [arXiv:1711.03978] (in combination with HL-LHC projections!)
- The ZH cross section (240 GeV run) is most sensitive to changes in the self-coupling
 - 365 GeV run is crucial for reducing uncertainties!

