Detector Summary

A Personal Selection

2nd US FCC Workshop, MIT

March 25-27

Felix Sefkow*

* Put all the blame here.

Introductory remarks

Detector systems and technologies

- Vtx
- Tracker
- Calorimeters

Detector concepts

- ALLEGRO, CLD, IDEA
- MDI
- TDAQ

Many thanks for the invitation

- personal bias
- all mistakes and mis-understandings are mine

Panel Discussion

My personal re-collection

Main question was about how to get involved

- how to get involved in particular at low level?
 - how to balance with ongoing experiments and obligations
 - cross-fertilisation
- deal with ILC FCC ambiguity?
 - common software framework
- relate to which detector concept?
 - all

Concrete suggestions in many talks

• see in particular André, Paolo, Nicolas

Detector Concepts

In a Nutshell

Detector concepts form the link between performance requirements and technological capabilities

- thus guide the R&D and give feedback on performance impact of technical solutions
 Two main ingredients:
- a full **simulation** model
 - enable validation of single particle performance with prototypes
 - realistic prediction of full-event performance: will also need higher-level reconstruction tools
- overall engineering
 - to act and respond in the design of the MDI
 - to guide the optimisation of the global structure and parameters

FCCee Detector Concepts

Defined by Calorimetry

- Well established design
 - ILC -> CLIC detector -> CLD
- Full Si vtx + tracker
- CALICE-like calorimetry;
- Large coil, muon system
- Engineering still needed for operation with continuous beam (no power pulsing)
 - Cooling of Si-sensors & calorimeters
- Possible detector optimizations
 - σ_p/p, σ_E/E
 - PID (**O**(10 ps) timing and/or RICH)?

- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies

DESY. US-FCC at MIT: Detector Summary | Felix Sefkow | March 2024

FCCee Detector Concepts

Defined by Calorimetry

- Well established design
 - ILC -> CLIC detector -> CLD
- Full Si vtx + tracker, study TPC option viability
- CALICE-like calorimetry;
- Large coil, muon system
- Engineering still needed for operation with continuous beam (no power pulsing)
 - Cooling of Si-sensors & calorimeters
- Possible detector optimizations
 - ν σ_p/p, σ_E/E
 - PID (O(10 ps) timing and/or RICH)?

- A bit less established desig
 But still ~15y history
- Si vtx detector; ultra light drift chamber with powerful PID; compact, light coil;
- Monolithic dual readout calorimeter;
 - Possibly augmented by crystal ECAL
- Muon system

...

CDR

- Very active community
 - Prototype designs, test beam campaigns,

- The "new kid on the block"
- Si vtx det., ultra light drift chamber (or Si)
- High granularity Noble Liquid ECAL as core
 - Pb/W+LAr (or denser W+LKr)
- CALICE-like or TileCal-like HCAL;
- Coil inside same cryostat as LAr, outside ECAI
- Muon system.
- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies

DESY. US-FCC at MIT: Detector Summary | Felix Sefkow | March 2024

DESY. US-FCC at MIT: Detector Summary | Felix Sefkow | March 2024

From Linear to Circular e+e- Detectors

Conceptual Adaptations

Lower energy jets and particles, less collimated jets:

- reduced calorimeter depth
- shift imaging vs. energy resolution balance towards the latter

see also:

Discussion of synergies by Caterina: FCC has many common challenges with ILC plus significant additional ones

- jet assignment ambiguities: added value of $\pi^0 \rightarrow \gamma \gamma$ mass reconstruction
- tracking even more multiple-scattering dominated: increased pressure on material budget of vertex detector and main tracker
 - fresh air to gaseous tracking

Limitations on solenoidal field B < 2T, to preserve luminosity:

- · recover momentum resolution with tracker radius
- on the other hand larger magnetic volume also more easily affordable (coil and yoke)

Main difference: no bunch trains; collisions every 20 ns (~ at LHC)

- no power pulsing, more data bandwidth: both imply larger powering and cooling needs
- adds material to the trackers and compromises calorimeter compactness or reduce granularity, timing, speed
- implications strongly technology-dependent, interesting optimisation challenges
- Trigger and DAQ re-enter the stage

Detector R&D Collaborations

T.Bergauer

- Gaseous Detectors (DRD1) [ex RD51]
- Liquid Detectors (DRD2)
- Photodetectors & Particle ID (DRD4)
- Calorimetry (DRD6)

Fully Approved

Conditionally approved — • Semiconductor Detectors (DRD3) [ex RD50, RD42,..]

Full proposals submitted last week for review

- Quantum Sensors (DRD5)
- Electronics (DRD7)

Letter of Intent submitted - Integration (DRD8)

2nd Meeting of the DRD Committee March 4, 2024 Talks by all approved DRDs https://indico.cern.ch/event/1356910/ and references therein

Detector subsystems and technologies

Sensors technology requirements for Vertex Detector

Several technologies are being studied to meet the physics performance

- Sensor's contribution to the total material budget is 15-30%
 - Services cables + cooling + support make up most of the detector mass
- Sensors will have to be less than 75 μ m thick with at least 3-5 μ m hit resolution (17-25 μ m pitch) and low power consumption
- Beam-background suppression
 - ILC/C³ evolve time stamping towards O(1-100) ns (bunch-tagging)
 - FCC, continuous r/o integrated over $\sim 10\mu$ s with O(1) ns timing resolution for beam background suppression

Physics driven requirements	Running constraints	Sensor specifications	
$\sigma < 3 \mu m$	·····>	Small Pixel	~15µm
Material budget 0.1%X ₀ /layer	>	Thinning to	50 µm
12.14 mm	➤ Cooling ····· ➤	Low Power	20-50 mW/cm ²
r of the Inner most laver	→ Beam-background>	Fast Readout	~1-10 µs
	➤ Radiation damage ·····>	Radiation Tolerance	10 MRad, $10^{14} n_{eq} / /cm^2$

Time resolution vs. power

O(ns) time resolution for beam-background suppression requires dedicated optimizations

Current designs that can achieve ns or sub-ns time resolutions compensate with higher power consumption

Target power consumption is less than 20 mW/cm²

Chip name	Experiment	Subsystem	Technology	Pixel pitch [µm]	Time resolution [ns]	Power Density [mW/cm ²]
ALPIDE	ALICE-ITS2	Vtx, Trk	Tower 180 nm	28	< 2000	5
Mosaic	ALICE-ITS3	Vtx	Tower 65 nm	25x100	100-2000	<40
FastPix	HL-LHC		Tower 180 nm	10 - 20	0.122 – 0.135	>1500
DPTS	ALICE-ITS3		Tower 65 nm	15	6.3	112
NAPA	SiD	Trk, Calo	Tower 65 nm	25x100	<1	< 20
Cactus	FCC/EIC	Timing	LF 150 nm	1000	0.1-0.5	145
MiniCactus	FCC/EIC	Timing	LF 150 nm	1000	0.088	300
Monolith	FCC/Idea	Trk	IHP SiGe 130 nm	100	0.077 – 0.02	40 - 2700
Arcadia	FCC/Idea	Trk	LF 110 nm	25	-	30

Dedicated ongoing effort to target O(ns) resolution with MAPS (slides) First prototype (Napa-p1) produced in TJ 65 nm process 5x5 mm², 25 µm pitch

- Cooling with air/He flow along the detector.
 - Air temperature: T_{air} = 15°C
 - Max sensor temp on layer 3 (hottest one) ~25/30 °C with He/Air.
 - Vibrations studies ongoing

Assembly of a half-layer

Gluing of the longerons

Gluing of the H-rings

Assembly of a half-layer

Gluing of the longerons

Gluing of the H-rings

FCC

Proposed layout using an ALICE ITS3 inspired design

(~0.05 % X/X_0 material budget per layer – 5 times less than the Mid-Term one)

After fruitful discussions with C. Gargiulo, A. Junique, G. Aglieri Rinella, W. Snoeys

719

Data backbone

719 719

Fabrizio Palla – Pisa & CERN – 2nd Annual U.S. FCC Workshop – MIT – 25 -27 March 2024

○ FCC

The SVT inner barrel ("bent" layers 0, 1, 2)

SVT inner barrel

ePIC specific needs:

- reduce services at forward/backward
- mechanical stability in the presence of a R=12 cm layer (R_{TTS3}^{max} is < 4 cm!)
- air cooling strategy is more challenging due to the presence of the disks

Innocenti

- built with bent ITS3 wafer-size sensors
- minimal support structure (carbon foam)
- air cooling (~ few m/s)
- Radii = 3.6, 4.8, 12 cm
- Lengths = 27 cm

The SVT inner barrel ("bent" layers 0, 1, 2)

air cooling

Innocenti

"Flat" Large Area Sensors (LASs) derived from ITS3

optimised for covering large surfaces • traditional staved structure (not bent)

- minimal support structure (carbon foam)
- air cooling (~ few m/s)
- Radii = 3.6, 4.8, 12 cm
- Lengths = 27 cm

The SVT outer barrel (layers 3, 4) and disks

SVT disks SVT outer layers SVT disks

Challenges:

 preserve the low material budget in the presence of carbon fiber supports and services disk geometry can obstruct air cooling for the inner barrel

- → SVT for ePIC as the most advanced application of stitched MAPS sensors for large-area wide-acceptance detectors
- → unique benchmark for a future MAPS-based FCC tracker

• carbon fibre support · integrated cooling (liquid or air)

ePIC specific needs:

- reduce services at forward/backward
- mechanical stability in the presence of a R=12 cm laye

SVT inner barrel

air cooling strategy is more challenging due to the pres

SVT at the ePIC: timescale and synergies with the ITS3 project

Stronger synergy with ITS3 R&D

ePIC/EIC specific

Key strategy of MIT PixELphi lab for the SVT project:

- build a CERN-based MIT pixel lab to maximize synergies with the R&D for ALICE ITS3 for ER2/ER3
- specific R&D for SVT detector (focus on data and service reduction)

April '23 Test Beam

- Partnered with CMS Endcap Timing Layer
 - Thanks to C. Madrid + A. Apresyan
 - Used there DAQ + MCP+ box
 - 8 channel LeCroy scope readout
 - 7 SiPM readout + MCP for trigger
- 120 GeV Protons
 - Fermilab Test Beam Facility
 - 4s spills, 1 spill a minute
 - ~60,000 events per spill
 - 3 cm x 3 cm beam spot
 - pixel telescope for position
- 1.5 days of data ~30 hours of work

Fermilab Grace Cu

Grace Cummings | CalVision General, 11 May 2023

Full containment hadronic prototype in progress Hidra2 call INFN CSN5

CIRCULAR DR calorimeter

Rutherfoord

Turbine Concept

 Inner radius portion with the full set of absorbers and electrodes (~240 of each):

Turbine Concept

Rutherfoord

 Inner radius portion with the full set of absorbers and electrodes (~240 of each):

Simplified model from 3D printer

- One consideration is the variation of the gap with radius
 - means that response is very different at the inner and outer radii (42 cm and 275 cm)
- To mitigate this, the detector can be subdivided into a set of nested cylinders:

Tradeoff between minimizing variation in gap width vs. minimizing transitions/dead areas

In this example, each cylinder has $r_o/r_i \approx 1.9$

Example of a detector design with built in control of systematics

Haber

Wither systematic errors at Tera-Z?

- With 10¹² Z's produced at Tera-Z, statistical errors will be so small that measurements can become systematics dominated
- Ignore here the major systematics from energy and luminosity. These will be addressed by other "specialists"
- Orthodoxy systematic errors also improve by sqrt(N)? So no problem???
- Actually, the need to reduce systematic errors may create new technical challenges to detector builders
- We will need to understand alignment, positioning, stability, tagging, efficiencies and acceptances with unprecedented accuracy
- These may be more challenging than meeting the regular physics performance specs like X_o, P_t resolution, ip_res, timing, etc.
- What does this mean in practice? Does it lead to new types of specifications and/or detector features, systems?

Haber

lots of room for toy studies redundancy is key

Wither systematic errors at Tera-Z?

- With 10¹² Z's produced at Tera-Z, statistical errors will be so small that measurements can become systematics dominated
- Ignore here the major systematics from energy and luminosity. These will be addressed by other "specialists"
- Orthodoxy systematic errors also improve by sqrt(N)? So no problem???
- Actually, the need to reduce systematic errors may create new technical challenges to detector builders
- We will need to understand alignment, positioning, stability, tagging, efficiencies and acceptances with unprecedented accuracy
- These may be more challenging than meeting the regular physics performance specs like X_o, P_t resolution, ip_res, timing, etc.
- What does this mean in practice? Does it lead to new types of specifications and/or detector features, systems?

Example: Stability of ATLAS LAr Energy Scale

Noble-liquid calorimetry: High intrinsic stability

- Pedestal stability < 100 keV
- Gain stability 2.6x10⁻⁴
- Parameters monitored in daily calibration runs
 - Changes in constants needed only about 1 / month
- Stability of the energy scale of $2x10^{-4}$
 - Visible on $Z \rightarrow ee$ invariant mass and E/p

Second US FCC Workshop, 25/03/2024

Towards a testbeam module

Plan to produce testmodule in the next four years

- Mechanical design of module (64 absorbers) has started
 - First finite element calculations performed
- Work on finding / adapting testbeam cryostat
- Common tools (e.g EUDAQ) should facilitate integration in testbeam facility

Seco

Towards a testbeam module

Plan to produce testmodule in the next four years

- Mechanical design of module (64 absorbers) has started
 - First finite element calculations performed
- Work on finding / adapting testbeam cryostat
- Common tools (e.g EUDAQ) should facilitate integration in testbeam facility

Seco

prototypes are small experiments!

The Allegro Ecal team in DRD6

Detector R&D (DRD) collaborations implement the ECFA Detector R&D Roadmap

- DRD6 on Calorimetry with 4 work packages and several transversal activities (TB, Materials, SW, ...)
 - <u>First Collaboration meeting:</u> <u>April 9-11 at CERN</u>
- Noble liquid calo is the WP2
 - 20 institutes from 7 countries
 - Of which **7 US institutes** !

4 main goals

- Performance studies and optimisation
- Study of readout electrodes
- Development of readout electronics
- Mechanical studies of a full calo, and for a testbeam module

The CLD Geometry FCC March 25, 2024 / FCC US WS A. Sailer - The CLD Detector Concept **Detector for FCCee** General purpose detector for Particle Flow reconstruction [1] Yoke Steel–Scintillator HCal Coil with 3 cm cell-size Superconducting Ε Silicon–Tungsten ECal HCAL ဖ Solenoid of 2 T with 5 mm cell-size Iron Yoke with RPCs ECAL Silicon Tracker, mostly Muon ID 50 µm pitch strips Vertex Detector with 25 µm pixels

6 m

Sailer

Sailer

Key4hep Software

- Software for CLD part of the Key4hep software stack
- Available on CVMFS: /cvmfs/sw.hsf.org/key4hep/setup.sh
- Documentation: https://key4hep.web.cern.ch
- See also the full sim demonstration by B. Francois

- --inputFiles ../test/yyxyev_000.stdhep \
- --numberOfEvents 3 $\$
- --steeringFile cld_steer.py $\$
- --outputFile tops_edm4hep.root

○ FCC

Manuela Boscolo

AlBemet Central Vacuum Chamber design

FCC

New Beampipe

- New beam pipe design (cf. MDI session). Figures from [7]
- Only using primitive volumes available in Geant4 and TGeo, no CAD created pieces here
 - Conical chamber is conical, no circular to ellipse volume

[mm]	Cyl R _{min}	Cyl R_{\max}	Cyl <i>L</i>	Cone R _{min}
v02	10	11.2	125	11
v05	10	11.7	90	12

FCC

CLD_04_v05

- Same as CLD_02_v05, except
- ECal Barrel replaced by LAr
- HCal, Solenoid, Yoke moved outwards by ≈40 cm
- Testing PandoraPFA for LAr, making interfaces more generic

27

Notes & 2004 / 2004 With a Construction of the state of

Calibration:

Impact of calibration issues and the resulting systematic uncertainties with an emphasis on issues at the Z pole for which full simulation is needed (together with physics perf.) → e.g. uncertainties of various potential luminosity measurements, calibration of the b-tagging and c-tagging efficiencies and fake rates

A. Saller - The CLD Detector Concept

Ideas for Further Studies I

Vertex detector and flavour tagging:

March 25, 2024 / FCC US WS

- Study implications of cooling needs at FCC-ee due to absence of power pulsing → so far only rough estimate of additional material; re-evaluate material estimates in general
- Optimisation of the vertex detector for the Z pole (backgrounds, lower jet energies)
- Improved treatment of material in the vertex detector region (in particular cooled beam pipe)
- Investigate potential of PID in the flavour tagging (together with physics performance) Tracking:
- Study implications of cooling needs at FCC-ee due to absence of power pulsing → so far only rough estimate of additional material; re-evaluate material estimates in general
- ► Further optimisation of the tracker configuration → e.g., overall size and trade-off between more material from additional layers and better acceptance for long-lived particles
- Explore compatibility of alternative options (e.g., gaseous tracking) with the presence of beam-induced background

Ideas for Further Studies II

A. Sailer - The CLD Detector Concept

Calorimetry:

March 25, 2024 / FCC US WS

- ► Study implications of cooling needs at FCC-ee due to absence of power pulsing → additional space needed / impact on sampling fractions
- Impact of full beam-induced background in the forward direction at the Z pole
- - Or for the more speculative approach: Chromatic calorimetry with Quantum Dots [9]?

Luminosity detectors:

- Further background studies
- Inclusion of the detailed MDI region and in particular the luminosity detectors in the CLD simulation

29

28

PID/PFlow: granularity optimisation

2023: important groundwork. \Rightarrow 2024: granularity optimisation studies possible

• Flexible geometry implemented in Full sim

- Can study EM shower shapes
- Benchmark: photon / π^0 separation
- Ongoing: implementation of cross-talk effects

Calibrations of reconstruction

- Simple MVA energy regression of EM clusters
- Cluster position calibration per layer
 - Allows pointing studies (⇒ ALPs)

Particle Flow on its way

- Using Pandora toolbox
- For technical reasons, pioneered in detector sim with Allegro Ecal + CLD Tracker
- Hope for first results in 2024 !

-0.1

0.0

 $(\theta_{cl}^{callb} - \theta_{true})/\Delta\theta$

0.1

Second US FCC Workshop, 25/03/2024

0.2

corrected

va = 0.005559

PID/PFlow: granularity optimisation

2023: important groundwork. ⇒ 2024: gra

- Flexible geometry implemented in I
 - Can study EM shower shapes
 - Benchmark: photon / π^0 separation
 - Ongoing: implementation of cross-ta

• Calibrations of reconstruction

- Simple MVA energy regression of EN
- Cluster position calibration per layer
 - Allows pointing studies (⇒ ALPs)

Particle Flow on its way

- Using Pandora toolbox
- For technical reasons, pioneered in (sim with Allegro Ecal + CLD Tracker
- Hope for first results in 2024 !

CERN R&D: address CFRP/Metal interfaces Promises for **"transparent" cryostats**: few % of X₀ !

Second US FCC Workshop, 25/03/2024

C EXAMPLE 1 COLLIDER The IDEA detector concept

 New, innovative, possibly more costeffective concept Silicon vertex detector ^D Short-drift, ultra-light wire chamber Dual-readout calorimeter [•] Thin and light solenoid coil *inside* calorimeter system • Small magnet \Rightarrow small yoke [□] Muon system made of 3 layers of μ-RWELL detectors in the return yoke

https://pos.sissa.it/390/

Acknowledgments I need to thank many colleagues, in particular: F. Bedeschi

The IDEA detector concept - Paolo Giacomelli

Status of Simulation of IDEA concept

FASTSIM Delphes IDEA card used for

performance studies FCCSW

Very sophisticated compared to default. Latest additions: Vertexing, LLP, PID, dN/dx, dE/dx

FULLSIM: standalone GEANT4 description

- Fully integrated geometry
- Output hits and reco tracks converted to EDM4HEP
- Ready for PFlow development and other reconstruction frameworks/algorithms (ACTS, Pandora etc) in FCCSW

Concept common issues

Beam Format and Detector Design Requirements FCC Mid Term Report

ILC Trains at 5Hz, 1 train 1312 bunches Bunches are 369 ns apart

FCC@ZH Bunches 1 µs apart

FCC@Z Bunches 20 ns apart

- Very low duty cycle at LC (0.5% ILC, 0.03% C³) allows for trigger-less readout and power pulsing
 - Factor of 100 power saving for front-end analog power
 - O(1-100) ns bunch identification capabilities
- Impact of beam-induced background to be mitigated through MDI and detector design
 - Timing resolution of O(ns) can further suppress beam-backgrounds and keep occupancy low
 - O(1-10) ns for beam background rejection and/or trigger decision before reading out the detector
 - Tracking detectors need to achieve good resolution while mitigating power consumption

Current status of beam-background studies

Same tools and methodology between ILC & FCC within Key4HEP

- ILC physics studies are based on full simulation data and some have been recently repeated for C³
 - Time distribution of hits per unit time and area on 1st layer ~ $4.4 \cdot 10^{-3}$ hits/(ns·mm²) ~ 0.03 hits/mm² /BX
- CLD detailed studies @FCC show an overall occupancy of 2-3% in the vertex detector at the Z pole
 - assuming 10µs integration time

D. Ntounis (2023)

G. Marchiori (2023)

TDAQ@Annecy2024

FCC

Beam induced backgrounds impact on detectors

- Machine backgrounds were evaluated during FS with limited impact on detector design, except for IPC backgrounds revealing constraints on vertex detector.
- The main limitation for completing these studies is twofold:
 - lack of digitizers (describing the readout electronics) for some sub-detectors
 - not all single beam induced backgrounds simulations, such as beam-gas, were ready. Complication is that these backgrounds build up with time or originate far from the IP and necessitate an interface plane with the detector.
- Efforts underway to standardize simulation of machine-induced backgrounds, akin to LHC methods, aiming to provide detector experts with background events for estimating occupancy, data rates, to evaluate the effects on reconstruction.

Data rates issues (see F. Bedeschi talk at 7th FCC Workshop)

- Largest data rates occur at the Z energy
- Expected data rates per BX/module [cluster size 5]
 - From machine backgrounds (Incoherent pair creation safety factor of 3) ~ 19 hits/BX/module
 - From collisions (200 kHz) ~ average ~<1 hit/BX/module
- Inner layer ~400 MHz/cm² \rightarrow ~25 Gb/s per module
 - might be reduced if cluster size is only 2 as measured for many MAPS
 - ALICE3 hit rate ~100 MHz/cm² (pixel size 10μm x 10μm)
 - 2nd layer ~10x less data volume
- Triggered readout: for 200 kHz the data bandwidth per module, rate is only 150 Mb/s
 - Impact on physics?
- All these depend on pixel pitch, thickness, R/O architecture, bias voltage.
 - For a review see <u>M. Winter talk at March 11 meeting</u>

Fundamental Concepts to Address: Do we need a trigger?

- Intelligence on detector: advance data reduction (ML/AI, etc)
- High performance sampling and timing (4D readout, etc)
- Levering emerging technologies (high-speed optical link, etc)

Fundamental Concepts to Address: Do we need a trigger?

- Intelligence on detector: advance data reduction (ML/AI, etc)
- High performance sampling and timing (4D readout, etc)
- Levering emerging technologies (high-speed optical link, etc)

Summary

Take-home

FCCee detectors represent real challenges

 radiation tolerance generally not an issue - but rate capability is, and in tension with ILC-like ambitions for material budget and compactness

There is time and room for new ideas, concepts and technologies

- radiation tolerance generally not an issue but rate capability is, and in tension with ILC-like ambitions for material budget and compactness
- try them out: demonstrators are collider-agnostic
- but real (scalable) prototypes will soon have to meet TDAQ electronics specs and will require some engineering

Software: common ILC FCC framework

• full simulations nearing completion - less true at the reconstruction frontier

After dinner: "starts to look like a real project"

• Lots of opportunities to get involved at smaller and larger levels - now!

Back-up

PICOSEC Micromegas

Alternative gas mixture studies But recall volume tiny!

- Studies on alternative gas mixtures
- **PICOSEC standard gas mixture:** Ne:CF₄:C₂H₆ (80:10:10) \rightarrow high gain, quenching, drift velocity, but expensive, **not eco-friendly**, flammable
- Alternative gas mixture: Ne:iC₄H₁₀ \rightarrow CF₄ dropped, iC₄H₁₀ as a replacement of C₂H₆ \rightarrow low GWP (0.2 instead of 740), good quenching

Promising results with Ne:iC₄H₁₀, further studies on the alternative gas mixtures to be performed

Ne:iC₄H₁₀ (94:6)

Ar-based gas mixtures: \rightarrow Ar:CO₂ (93:7) \rightarrow Ar:CO₂:iC₄H₁₀ (93:5:2) also tested but showed unstable operation

> Details: D. Fiorina, INFN Pavia, FAST2023: <u>link</u>

AUTO-DIFFERENTIATION

Keep track of gradients at each step → repeated chain rule*

