The Allegro Concept

Nicolas Morange, IJCLab

Second US FCC Workshop, 25/03/2024

Laboratoire de Physique des 2 Infinis

What is Allegro ?

N. Morange (IJCLa

A Noble-Liquid Ecal Based Detector Concept

- Allegro Ecal: Noble liquid calorimeter is a promising solution to fulfil FCC-ee physics requirements
 - Z pole measurements, B and τ physics, Higgs physics
 - From low energy photons to high-energy jets
- Allegro as a detector concept: vision of a high-performance general detector for FCC-ee physics
 - Based on physics requirements and knowledge of performance of proposed sub-detectors
 - Current concept design very open for change
 - We welcome new ideas !

FCC-ee physics

Detector requirements: tracking performance

- Momentum resolution
 - Avoid large contribution from MS: the lighter, the better
- Flavour tagging: vertex detector
 - Closer to IP
 - Lighter
 - Smaller pixels

$$\sigma_{d_0} = a \oplus rac{b}{p \sin^{3/2} \theta}$$

 $a \simeq 5 \, \mu \mathrm{m}; \quad b \simeq 15 \, \mu \mathrm{m \, GeV}$

	r beam pipe	1 st VTX layer	
ILC	12 mm	14 mm	
CLIC	29 mm	31 mm	
FCC-ee	10 mm	12 mm	

 $\sigma_{\rm nt}/{\rm pt}$

Detector requirements: PID

PID capabilities across a wide momentum range is essential: flavour physics, $H \rightarrow ss_{m}$

FCC-ee Simulation (IDEA)

s tagging vs. ud

 $dN/dx + t.o.f (\sigma_1=30 ps)$ $dN/dx + t.o.f (\sigma_1=3 ps)$

5

no PID
 dN/dx

ideal PID

et misid. probability

10

 10^{-2}

10

 $e^+e^- \rightarrow ZH, H \rightarrow jj$ j = u, d, s, c, b, g

- Drift chamber: dE/dx or cluster counting
 - \circ 3 of or K/ π separation up to 100 GeV
 - Can be complemented with simple TOF for hole at 1 GeV
- Time-Of-Flight: ~10 ps resolution over 2m (LGAD, TORCH)
 - 3σ for K/ π up to ~5 GeV
- RICH counters (ARC)
 - $\circ~~3\sigma$ for K/ $\pi~$ in 5 80 GeV range

Detector requirements: Calorimetry

• EM objects

- PID $e/\gamma/\pi^0$, esp. at low energy \Rightarrow Granularity
- High energy resolution

Jets

- Target: $\sigma(E)/E = 30\%/\sqrt{E}$ (GeV)
 - Typical figure of merit: W/Z boson separation
 - Actual use: variety of hadronic measurements
- Requires high granularity to maximally use PFlow reconstruction
- Dual Readout as additional handle

Many options on the table, for both Ecal and Hcal

Detector technology (ECAL & HCAL)	E.m. energy res. stochastic term	E.m. energy res. constant term	ECAL & HCAL had. energy resolution	ECAL & HCAL had. energy resolution	Ultimate hadronic energy res. incl. PFlow
			(stoch. term for single had.)	(for $50 \mathrm{GeV}$ jets)	(for 50 GeV jets)
Highly granular					
Si/W based ECAL &	15-17%[12,20]	1% [12, 20]	45-50~%~[45,20]	pprox 6% ?	4% [20]
Scintillator based HCAL					Lever week
Highly granular					8000 0
Noble liquid based ECAL &	8-10% [24,27,46]	$< 1 \% \ [24, 27, 47]$	pprox 40 % [27, 28]	pprox 6%?	3-4% ?
Scintillator based HCAL					
Dual-readout	11 % [48]	< 1 % [48]	$\sim 30 \%$ [48]	4 - 5% [40]	3 - 1%?
Fibre calorimeter	11 /0 [40]	< 1 /0 [40]	~ 50 70 [40]	4 - 5 76 [49]	0 - 4 / 0:
Hybrid crystal and	3 % [30]	< 1 % [30]	pprox 26 % [30]	5-6%[30,50]	3-4%[50]
Dual-readout calorimeter	0 /0 [00]				

- All options feature good jet energy resolution
- Varying Ecal resolution \Rightarrow Highest EM resol required for B physics
- Varying segmentation: PFlow, shower shapes, cluster pointing
- Other characteristics: Operational stability, cost

Allegro detector concept

A Lepton coLlider Experiment with Granular Read-Out

- Vertex Detector:
 - MAPS or DMAPS possibly with timing layer (LGAD)
 - Possibly ALICE 3 like?
- Drift Chamber (±2.5m active)
- Silicon Wrapper + ToF:
 - MAPS or DMAPS possibly with timing layer (LGAD)
- Solenoid B=2T, sharing cryostat with ECAL, outside ECAL
- High Granularity ECAL:
 - Noble liquid + Pb or W
- High Granularity HCAL / Iron Yoke:
 - Scintillator + Iron
 - SiPMs directly on Scintillator or
 - TileCal: WS fibres, SiPMs outside
- Muon Tagger:
 - Drift chambers, RPC, MicroMegas

Vertex detector and momentum measurement

No cabling, no piping in the active area

Transparency key for high resolution

- Light vertex detector and tracker
 - Particle energies < 100 GeV: lower MS contribution required
- Vertex detector: MAPS-based
 - Similar to e.g Belle 2 or ALICE ITS3
 - Typically: 5 layers, 33 x 33 μm² pixels
 - Extremely light: Inner layers: 0.1% X₀ / layer
 - Outer layers: 0.5 1% X₀ / layer
 - IP resolution ~10 μm

IN. Morange (IJCLab)

Curved MAPS sensor

Drift chamber: IDEA design

IDEA: Extremely transparent Drift Chamber

- Large volume:
 - Rin = 0.35 m, Rout = 2 m, L = 4 m
- Operating gas: He 90% iC₄H₁₀ 10%
- Full stereo:
 - 112 co-axial layers, at alternating-sign stereo angles ranging from 50 to 250 mrad
 - Allegro: Longer DC \Rightarrow fewer layers
 - Careful optimisation needed
- Expected resolution $\sigma_{xy} < 100 \ \mu m$, $\sigma_z < 1 \ mm$
- Cluster counting for PÎD

Poisson

Noble liquid based Ecal

- Decades of success at particle physics experiments: from R806 to ATLAS
 - Mostly LAr, a bit of LKr

• An appealing option for FCC-ee

- Good energy resolution
- High(-ish) granularity achievable
- Linearity, uniformity, long-term stability
- Easy to calibrate

Excellent solution for small systematics

- Lots of interesting studies / R&D to do
 - Optimization for PFlow reconstruction
 - Achieving very low noise
 - Lightweight cryostats to minimize X₀
 - Designing for improved energy resolution

Example: Stability of ATLAS LAr Energy Scale

Noble-liquid calorimetry: High intrinsic stability

- Pedestal stability < 100 keV
- Gain stability 2.6x10⁻⁴
- Parameters monitored in daily calibration runs
 - Changes in constants needed only about 1 / month
- Stability of the energy scale of 2x10⁻⁴
 - Visible on $Z \rightarrow ee$ invariant mass and E/p

Granularity of Noble Liquid Calorimeters

- Calorimeter design:
 - Granularity of the calorimeter
 ⇔ granularity of the electrodes

• ATLAS: copper/kapton electrode

- Traces to read out middle cells take real estate on back layer
- Cannot really increase granularity
- FCC-ee requirements
 - High jet energy resolution needed
 - Particle flow algorithms take advantage of much finer granularity

• Solution for Noble Liquid calo for FCC

• Multi-layer PCB to route signals inside

How to achieve high granularity?

Aiming for ~ ***10** ATLAS granularity

- High granularity required for better PFlow performance (few million cells)
- >6 compartments to compensate LAr gap widening

Implementation: multi-layer PCBs

- 7-layer PCB
 - Signal collection on **readout planes**
 - Transmission through via
 - Signal extraction on trace
 - **Ground shields** to mitigate cross-talk
- Challenges
 - Trade-off capacitance (noise) / cross-talk
 - Maximum density of signal traces ?
- Studies on simulations and prototypes

Allegro Barrel Design

Design driven by the solution used for electrodes

- 1536 straight inclined (50°) 1.8mm Pb absorber plates
- Multi-layer PCBs as readout electrodes
- 1.2 2.4mm LAr gaps (LKr seriously considered)
- 40cm deep (22 X₀)
- $\Delta \theta$ = 10 (2.5) mrad for regular (strip) cells, $\Delta \phi$ = 8 mrad, 11 longitudinal layers

Copper electrodes: lots of flexibility

- Number of layers and granularity of layers fully optimizable
- Projective cells
- Lots of room for optimisation !

Designs for the endcaps: first ideas

Endcaps designs more complex than that of the barrel: very preliminary ideas !

- "Turbine" design
 - More similar to barrel design
 - o Symmetric in φ
 - Issue: increase in the size of the Noble liquid gaps
 - Need to stack several cylinders

- XY / Pie wedge designs
 - Less symmetry in φ
 - Increase of LAr gaps under control
 - Many types of electrodes to draw and produce

Energy resolution: design options and noise

- Constant term
 - Hermeticity, low dead material, uniformity
- Sampling term: improve sampling fraction
 - Optimise gap size, sampling fraction, active and passive material
 - Explore LAr \Rightarrow LKr, Pb \Rightarrow W
 - between 5% and 7.5%
- Noise term: readout electronics
 - Want: measurement of 200 MeV photons, S/N>5 for MIPs
 - Longer shaping time wrt ATLAS (200 ns) helps a lot
 - Cold frontend electronics in the cryostat would provide noiseless readout

$$N\sim C_d\sqrt{rac{4kT}{g_m au_p}}$$

PID/PFlow: granularity optimisation

2023: important groundwork. ⇒ 2024: granularity optimisation studies possible

• Flexible geometry implemented in Full sim

- Can study EM shower shapes
- Benchmark: photon / π^0 separation
- Ongoing: implementation of cross-talk effects

Calibrations of reconstruction

- Simple MVA energy regression of EM clusters
- Cluster position calibration per layer
 - Allows pointing studies (⇒ ALPs)

Particle Flow on its way

- Using Pandora toolbox
- For technical reasons, pioneered in detector sim with Allegro Ecal + CLD Tracker
- Hope for first results in 2024 !

N. Morange (IJCLab)

Second US FCC Workshop, 25/03/2024

0.2

0.1

corrected

= 0.00555

Electrodes prototypes

Explore tradeoffs: max granularity / capacitance (noise) / cross-talk

First large-scale prototype at CERN

- Explore many options for grounding, for shields
- First layers readout at the front
- Few per-mille cross-talk achievable with long shaping

• Next prototype at IJCLab

- All layers readout at the back
 - Best for material budget, worse for noise and cross-talk
- Use of connectors for easier measurements
- New shielding ideas
- Development of system for automated measurements

N. Morange (IJCLab)

Second US FCC Workshop, 25/03/2024

Mechanical studies

Simulation studies

• Model the full barrel

- Define support structures, spacers
- Study thickness of steel sheet
- Simulations in warm and in cold

N. Morange (IJCLUD)

Absorbers prototypes

• First feasibility prototypes

- Verify assumed rigidity
- Thermo-mechanical tests in liquid nitrogen

Cryostat and feedthroughs

Low mass cryostats

- Minimise dead material in front
 - Use of sandwiches with carbon fiber
 + Al honeycomb
 - Synergy with progress in aerospace
- CERN R&D: address CFRP/Metal interfaces
- Promises for "transparent" cryostats: few % of X₀ !

High-density feedthroughs

- Aim for ~ ×5 density and ~ ×2 area wrt ATLAS
- Successful R&D on connector-less feedthroughs at CERN
 - 3D-printed epoxy resins structures with slits for strip cables, glued to the flange
 - Leak tests and pressure tests at 300 K and 77 K

Second US FCC Workshop, 25/03/2024

Towards a testbeam module

Plan to produce testmodule in the next four years

- Mechanical design of module (64 absorbers) has started
 - First finite element calculations performed
- Work on finding / adapting testbeam cryostat
- Common tools (e.g EUDAQ) should facilitate integration in testbeam facility

Seco

675mm

200mm -

Detection zone

473mm

400mm

HCal for noble liquid based concept

- HCal inspired by ATLAS TileCal implemented in FCC Fullsim and studied so far
 - Other Sci/Steel options, e.g CALICE AHCAL will be studied as well
- Design
 - 5mm steel absorber plates alternating with 3mm Scint.: 8 - 9.5λ
 - 128 modules in ϕ , 2 tiles/module, 13 radial layers
 - Work on optimisation of segmentation and reconstruction is in full swing
 - Started testing Sci tile + WLS fibre + SiPM readout
- Performance
 - Ecal + Hcal combined clustering implemented
 - Single-pion resolution: $36\%/\sqrt{E}$

The Allegro Ecal team in DRD6

Detector R&D (DRD) collaborations implement the ECFA Detector R&D Roadmap

- DRD6 on Calorimetry with 4 work packages and several transversal activities (TB, Materials, SW, ...)
 - First Collaboration meeting: April 9-11 at CERN
- Noble liquid calo is the WP2
 - 20 institutes from 7 countries
 - Of which **7 US institutes** !

• 4 main goals

- Performance studies and optimisation
- Study of readout electrodes
- Development of readout electronics
- Mechanical studies of a full calo, and for a testbeam module

N. Morange (IJCLab)

Conclusion: Towards an Allegro detector

- The Allegro Noble-liquid Ecal project is progressing fast
 - Active and motivated group, that is expanding thanks to the creation of DRD6
 - Progress on all fronts: simulation, electrodes, mechanics
 - Planning for a testbeam module in 2028
- The rest of the detector is so far mostly a sketch on paper
 - Our take at what an excellent detector for FCC-ee could be, based on the stringent detector requirements to fulfil the FCC-ee physics programme
 - First discussions with colleagues interested in other sub-detectors
 - The design is **fully open to new ideas** and significant changes

Come talk with us to make this detector more than a concept !

