Fermilab **ENERGY** Office of Science

Research and Development in the United States towards the FCC RF/SRF systems

26 March 2024 Kellen McGee, Ph.D., *FNAL*

Outline

- Introduction of Goals/Overview
- SRF development
 - Bulk Nb: Current and ongoing High Q cavity studies, tuner/design concepts, cryomodule design concepts
 - Nb/Cu energetic deposition, SIS multilayer studies
- RF sources/modulators development
 - Models for electron-positron source/injector linac
 - High-efficiency klystron development

Operation sequences for FCC-ee and RF configuration

• Evolution of RF configuration of collider and booster with beam energies and physics operation points

🛟 Fermilab

Long-term R&D for SRF, in particular for the 800 MHz system

*from Michael Benedikt, Status of the FCC plenary, 3/25/2024

Total of ~370 cryomodules and 1500 cavities with 75% in bulk niobium technology

*from Franck Peauger, and CERN SRF Team

🛟 Fermilab

800 MHz bulk Nb SRF Development

FCC Goals overview

- High-efficiency 800 MHz RF power sources and modulators
- FCC-ee SRF R&D
 - Phase 1: R&D on cavities to reach $Q_0 = 3 \times 10^{10}$ at $E_{acc} = 25$ MV/m for Booster up to Higgs operation (120 GeV per beam)
 - Phase 2: R&D on cavities to reach $Q_0 = 6 \times 10^{10}$ at $E_{acc} = 25$ for Booster and Main Ring for $t\bar{t}$ operation
 - In parallel: Cryomodule (CM) design optimization for 800 MHz cavities, possibly with integrated focusing
 - 28 CMs for the booster up to the *H* energy
 - 244 CMs for the $t\bar{t}$ energy

5-cell 800 MHz FCC SRF cavity goals

- Bulk Nb, High Q
- Desired performance

₹Fermilab

- Eacc = 20 MV/m, Q0 = 3e10 in operation
- Eacc = 24.5 MV/m, Q0 = 3.8e10 in vertical test

	Energy (GeV)	Current (mA)	RF voltage (GV)	
Z	45.6	1280	0.080	High
W	80	135	1.05	machine
Н	120	26.7	2.1	High
ttb	182.5	5	11.3	gradient machine

800 MHz 5-cell prototype cavity

• Fabricated at Jlab, currently at FNAL

- High-power RF cold-test plan (Spring 2024):
 - 1. Baseline cold-test (EP, last tested 2018, see Figure 4.)
 - 2. First mid-T (300-350C) baking treatment (Spring 2024)

Figure 4: Combined VTA results for the five-cell and single-cell cavity as measured at 2 Kelvin.

🚰 Fermilab

F. Marhauser et al. 802 MHz ERL Cavity Design and Development (cern.ch) IPAC 2018 THPAL146

1-cell 800 MHz design

- FNAL mechanical design based on CERN RF design (endcells)
- Compatible with high-temp; Nb3Sn cavity R&D
- CERN to fabricate 3 in-house, send to FNAL for bulk surface processing, and RF testing

Integrated jacketed cavity + tuner design

- Initial design proposed by CERN
- FNAL contributing changes based on PIP-II,LCLS-II, e.g:
 - Redesign with smaller bellows
 - Integrated He jacket and tuner design so loads/stiffness managed efficiently
- Tuner design to be based on modified FNAL 650 MHz doublelever tuner
 - FNAL has unique experience manufacturing/QA testing these in production quantities

Cryomodule design

- FNAL has undertaken preliminary design work for segmented, continuous, and hybrid cryomodule concepts
 - Fine-segmented design draws heavily on PIP-II design, which also benefits from PIP-II international shipping studies, etc.
 - Continuous design concept in early stages, based on LCLS-II CM design

Developing contributions

Nb/Cu cavity development

- Aim: Enable 4 K operation
- HiPIMS & ECR @ JLAB
 - 1.3 GHz Nb/Nb demonstration
 - lower frequency cavity deposition: 952.6 & 800 MHz, substrates on hand
 - Ideal substrates development
 - Machining (CERN), hydroforming
 (KEK) Courtesy: G. Rosaz, K. Scibor CERN

HiPIMS Nb/Nb 1.3 GHz TE cavity

Advanced SRF development

- Above 20 MV/m demonstrated in 1cell, 15 MV/m demonstrated in multicell Nb3Sn at FNAL
- Material studies and development of Nb3Sn cavities @ JLab
 - Alternative deposition methods, SIS multilayer materials
- Process developments towards Nb3Sn cavities in operation
 - 1e10 @10 MV/m
 - Cavities coated @JLab & FNAL
 - ¼ cryomodule assembly complete!
 - Test scheduled April 2024

Based on G. Eremeev's ECA, Jlab cavity work supported by R&D fund.

RF Accelerator Technologies for FCC-ee

- FCC injector complex (up to 20 GeV) linac
 - Compact and high-gradient RF accelerator for injection
 - Design studies for versatile bunch format (multi-bunch and full range in charge)
 - US-Japan program on positron sources expand to FCC-ee
 - FCC-ee common electron and positron injector linac from 6 to 20 GeV based on cold-copper: reduce length by 3.5x or reduce RF power by 3.5x
 Wide Aperture S-band Injector Linac

RF sources for FCC-ee

- High-efficiency RF sources needed for Injector, Booster, and collider ring
 SLAC BAC Prototype
- SLAC is a participant of the CERN lead HEIKA collaboration on RF Sources
- Active development of permanent magnet klystrons
- Demonstration of high-efficiency and energy recover concepts

SLAC Green-RF Energy Recovery

N, 12 GHz klystron (CERN/CPI).

🛟 Fermilab

Summary

- Multiple strong avenues for US-FCC involvement on RF/SRF systems
 - Ongoing High Q cavity studies
 - 1-cell and 5-cell prototypes available for advanced surface processing development
 - Integrated jacket/tuner design underway
 - CM design studies undeway
 - Nb/Cu, Nb3Sn, SIS fundamental R&D ongoing
 - RF injector linac/RF power source improvement ongoing
- Multiple projects poised to make meaningful progress with dedicated FCC support

Development of Nb/Cu Cavities by Energetic Condensation

A.-M. Valente-Feliciano et al.

Fermilab

Jefferson Lab

HiPIMS & ECR

Quality Substrates Development Cu cavities machined in the bulk as

Cu hydroformed cavities (KEK, Texas

"ideal" substrates (CERN)

 HiPIMS cavity coating @ 1.3 GHz Deposition ramped up to 1 cavity/week if substrate available
 Iower frequency cavity deposition

 (952.6 & 800 MHz, substrates on hand)

SRF Developments around Nb₃Sn

U. Pudasaini et al.

Nb₃Sn-Coated single-cell c

Material studies and development of Nb₃Sn-coated cavities

Alternate Techniques Development for Compact Accelerators based on

Nb₃Sn

Process Developments towards Nb₃Sn cavities in operation

5C75-RI-04 JLAB @ 4.3 K

9 10

5C75-RI-NbSn02 Fermilab @ 4.3 K

11 12 13 14

Based on G. Eremeev's ECA, Jlab cavity work supported by R&D fund.

- Specs: 1 e10 @10 MV/m
- One cavity was coated at Fermilab and another at Jlab..
- Quarter cryomodule assembly is complete.
- Test scheduled for April 2024.

Limited by multipacting (no quench)

2 3

4 5

Original C75 cavity made of large grain material

1E11

P 1E10

1E9

.

0 1

Eace (MV/m)

RF/SRF R&D in the US for FCC-ee

SIS Multilayered Structures

A.-M. Valente-Feliciano et al.

Taking advantage of the high –Tc superconductors with much higher H_c without being penalized by their lower Hc1... Multilayer coating of SC cavities: alternating SC and insulating layers with $d_{sc} < \lambda$

RF/SRF R&D in the US for FCC-ee

Higher T_c thin layers provide magnetic screening of the Nb SC cavity (bulk or thick film) without vortex penetration

Alex Gurevich, Appl. Phys. Lett. 88, 012511 (2006)

3rd Harmonic Setup for H_{FP} measurement

Jefferson Lab

SIS Multilayered Structures

A.-M. Valente-Feliciano et al.

• Implementation on QPR samples and elliptical cavities for RF evaluation

Synergistic Developments

Application of NbTiN to superconducting digital logic and metamaterials

Application of thick Nb₃Sn on Cu films for conduction cooled cavities, industrial & environmental accelerators

RF/SRF R&D in the US for FCC-ee

RF Accelerator Technologies for FCC-ee - Accelerator

FCC-ee injector complex include (up to 20 GeV) linac Possible Contributions:

- Compact and high gradient RF accelerator for injection
- Design studies for versatile bunch format (multi-bunch and full range in charge
- US-Japan program on positron sources expand to FCC-ee
- Example: FCC-ee common electron and positron injector linac from 6 to 20 GeV based on cold-copper

Wide Aperture S-band Injector Linac

- Planned test at Argonne
- Tracking with Lucretia includes longitudinal and transverse wakes, chromatic effects etc
- Error study is 100 seeds, 100 μm element
 offsets, 300 μrad element rolls (rms)
 - No corrections applied

Courtesy of Y. Enomoto

90% seeds < 8 um-rad with lattice errors

6.1 Q (HC)

RF Accelerator Technologies for FCC-ee – RF Sources

RF Sources Needed for Injector, Booster and Collider Ring Possible Contributions:

- SLAC is a participant of the CERN lead HEIKA collaboration on RF Sources
- Active development of permanent magnet klystrons
- Demonstration of high-efficiency and energy recover concepts
 High Efficiency RF Sources (CLIC)

SLAC BAC Prototype S-band Retrofit +10% efficiency, 73 MW 4 New Cavities Added to Drift Space

SLAC Green-RF Energy Recovery

