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FCC IR Key Challenges
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FCC-ee IR challenges

« Very tight MDI requirements

« Strong anti-solenoid field 300kN (30Ton)
—> large forces, no space for support

« Warm beam pipe inside cold magnet
(1.9K)

« Cross-talk field compensation between
beam lines

« Warm BPMs embedded in LHe

» Cryostat support (from detector or 24 )
external)

« Utility interface (cryogenics, leads etc.),

« Detector installation

« Stray field, radiation shielding
requirements.
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US capabilities
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EIC Interaction Region S e

25 mrad crossing angle,
10 ns bunch spacing

Variable CM energy 20-140 V(Z/A) GeV <l X

Hadron beam species from protons up to Uranium

Small * to reach luminosity 10%*cm=?s-" requires crab
cavities and large final focus quadrupole aperture

Electron ring
Forward side

Forward Side
SC Magnet
Cryostat

ePIC detector

Machine Detector Interface m—

 Large detector acceptance | Cem

« Forward spectrometer -

« No magnets within - 4.5/ +5 m from IP

« Space for luminosity detector, neutron
detector, “Roman Pots”

Hadron ring
Injection
Line

Hadron ring
Forward Side

Hadron ring
Rear Side

Rapid Cycling
Synchrotron
With Detector
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EIC IR Superconducting magnets

EIC IR Magnet Challenges: ]- : :
Highly integrated superconducting electron and hadron magnets (NbTi). The customized tooling for
collared coils is expensive

Need to prototype, manufacture and test multiple one of a kind magnets.
Most magnets done using Direct Wind technique (use collared coil technology only for highest fields / gradients).

EIC Direct Wind, Double Helical, Tapered The FCC-ee IR magnets intrinsically
Constant Gradient Quadrupole Coil R&D require very Carefully tailored field
profiles to enable variable CM
.. Fleld Measurements | anargy strong focusing while
\ ---600A handling magnetic crosstalk and local
. --400A optics correction (dipole, skew-dipole
and skew-quadrupole coils).

EIC Rear Cryostat with Side-By-Side
Hadron and Electron Beamlines

Field (1)
-

EIC’s IR design uses a mix of
Serpentine and Double Helical

(CCT) Direct Wind magnet coils. N . . . . ]
s S e b ] (U B Direct Wind coil fabrication enables
4 flexible implementation of radially
_,i?‘fiu thin, compact correctors to adapt to
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demanding IR space and magnetic
field configuration requirements.
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Direct Wind Coil Fabrication (NbTi)

 Unique BNL Direct Wind capability
for high precision, specialty and IR
magnets

» FCC-ee can benefit from EIC upgrades
to two existing capabilities:

* Modernized computer control
hardware / software for increased
precision

* Enhanced reliability capable of
winding longer / larger-diameter
coils.

* This is the only practical technology
foreseen for making the FCC-ee IR

New winding heads
providing greater

magnet correction coils on very tight speed, extended
wire lengths for
spaces. longer / larger

diameter patterns.
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Magnet alignment

« The AUP/Hi Lumi projects are using a Frequency
Scanning Interferometry (FSI) monitoring system and
surveying to achieve high accuracy magnet alignment

* There are 2 key aspect of magnet alignment

1. Survey effort to understand where the magnetic axis
IS relative to outside fiducials (single strand wire) —
100 um accuracy

2. Actual effort to align the magnet to be in the desired
location. This usually happens in the accelerator
tunnel — 10-20 um accuracy

* These very precise alignment technologies developed
for Hi Lumi can also be utilized in FCCee

SSW system used for alignment/strength
measurements (shown here during fabrication)
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Magnetic measurements

FNAL has successfully utilized both a
single stretched wire system and a
PCB based rotating coil probe for AUP
magnet measurements

These capabilities are critical for
magnetic alignment and verification
during the installation of the magnets
at CERN

The measurements also verified the
integrated harmonics for the magnets

LQXFAO1 Integrated harmonics
Nominal Current, 16233 A
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Rotating coil ‘FERRET’ probe

Cryo
Feed

Supports for
push tube

Coil drive shaft
rotation motor

Probe has 436mm-long
winding and two ‘back-to-
back’ 109mm-long windings.

Rail drive
carriage

Laser tracker targets visible
from non-drive end

22m-long, 6mm diameter carbon fiber rotating
drive shaft and polycarbonate push-tube
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BNL Magnet Division — Capabilities and Priorities

Vision: To be a world class superconducting and electromagnetics team creating the future of
superconducting magnet technology.

Magnet Division staff deliver leadership in:
» Superconducting magnet technology

» Magnet development, manufacturing and testing with application to accelerator, science, fusion and
industry

Capabilities:
* LTS and HTS superconducting magnets - 10m Coil Winding Capability, Nb;Sn furnace 4.2 m

» Direct wind magnets and facility -IR and Specialty Magnets, Precision Field Quality, 2.5m Coil Winding
Capability

* Magnet Test facility - 1.9K, 22KA, 6.1m deep, 71cm dia.

Current priorities:

» Accelerator Upgrade project — coil construction, vertical magnet test
* EIC magnets — IR, magnet measurement, RHIC magnet re-use

* Magnet Development Project — HTS/LTS hybrid, Diagnostics

» Fusion — INFUSE, ARPA-E (CFS), MPEX

Deliver superconducting applications for DOE (SC, ARPA-E, ...) and SPP (Power, Fusion,...)
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Accelerator Upgrade Project
BNL Scope 18

All tests at 1.9 K otherwise specified |

Accept.:
16.53 kA

|MQXFAO3 2nd Therm. Cycle

« Manufacture 47 4.2m quad coils Rl e
- Test 27 4.2 magnet cold masses B,
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Magnet fabrication and test facilities at Fermilab

= Mission: to support developing and maintaining magnet fabrication and test facilities for
GARD, other R&D programs (MDP, LDRD, ECA, ...), and projects (PIP-II, LBNF/Dune, HL-
LHC, Mu2e, High Field Vertical Magnet Test Facility (HFVMTF))

= To support this mission, our state-of-the-art facilities must be maintained and updated to
fulfill demands of current and future research programs and projects

= World-class capabilities include

Q SC Strand and Cable Testing Lab - projects and R&D

O Superconducting Magnet Fabrication Facility — AUP coil production, MDP

O Magnet Testing Facilities
« Room Temperature Magnet Measurements — Accelerator Complex (M, spares), WFO (ORNL PPU)
« Superconducting Magnet Testing

o Vertical Magnet Test Facility (cold masses, AUP, and R&D)

o Stand 4 Horizontal Test Stand (AUP)

o Stand 3 (Mu2e HTS leads, small R&D magnets)

o Stand 7 cryostat for small cryo-cooled magnets - PIPII, undulators
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SC Magnet Test Facility

14

Last 5 years

MTF is an ensemble of comprehensive
capabilities and facilities that enable Magnet e
Science and Technology R&D and support
projects at Fermilab

For the last 5 years MTF performed 79 tests
for different projects and R&D PIPII

For the next 10 years we expect throughput to M
increase serving:
— HEP projects for next decade (LBNL, PIPII)

— Support complex R&D for the future lepton PIPIL 9%
and hadron colliders

— Support testing of LTS and HTS conductor
for fusion and HEP LBNF/DUNE

18%
— Develop cutting-edge test systems and stands

Next10 years

Acc. Support

3/25/24

EIC? 8%
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The Magnet Test Facility (MTF) at LBNL

Mission: testing and characterizing prototype high field
superconducting magnets at 77K and 4.2K;

Several magnet parameters, such as current, training behavior, and
field quality are tested and characterized at MTF;

The facility can adapt to a wide variety of magnets and provide unique
instrumentation capabilities;

Several upgrades are current ongoing at LBNL to further improve the
Magnet Test Facility capabilities.

\( )

« Two power supplies (25 kA, 4.8kA) and protection circuits with
fast IGBT switches; upgrade to 7.2 kA coming soon
» Dual FPGA quench detection systems and FPGA IGBT Timing
controller
« Hybrid header for dual powering (13 kA, 10 kA)
«  Will be upgraded to 20 kA

25kA Power Supply || |GBT-switched extraction
= it ‘ “ : -
\E Lapa W LabVIEW RT LabVIEW FPGA
cr:/ Iows/ el LabWIn;I.Ic_ows/CVI ) Custom VHDL
FPGA- Win/Linux [ vxworks |
based
quenCh Controller ) Cle
detection
system
Modules
== NI-9215 NI-9401
D¢ L LBNL QUENCH DETECTION SYSTEM 4 ch 100ks/s 16bch 100ns TTL
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Short Sample Test Facility

16 T solenoid magnet for short sample measurements

Current up to 2 kAfor the samples
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Cryogen-Free RRR Measurements

Cryogen-free measurements of RRR with
a high reproducibility and a low cost.

-

 <=| Cryocooler
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Data Cables
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<> 35S Shell

I 1 Al Shell
Flex Cable

LBl

Custom designed PCBs to
measure RRR of strands
extracted after cabling (top)
and straight wires (bottom).
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Material Characterization

- Extensive SEM capabilities for phase and crack analysis, coupled with advanced image
analysis

« Experience characterizing Nb;Sn, REBCO, NbTi, Bi2212, Bi2223

SnAg (solder) e

\\

Scios 2

3 WD magd HV tilt curr det HFW

Elemental com position maps 7X)_ 9.3 mm 350 x 20.00 kV 0.0 ° 6.4 nAT1 1.18 mm

Phase analysis for Nb;Sn Crack analysis in reacted Nbs;Sn
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Potential US contributions
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IR Magnet Design IR Magnet Design
Quadrupole strengths for different CM energies

Anti-solenoid optimization
IR quadrupole design Mag net SyStemS Detector solenoid compensation implementation
Optics tunning and necessary correctors

IR corrector design
Prototype and testing Dealing with energy deposition in cold mass
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RN - Space between cryostats is used for support
structure, cyrogenic and current feed points
plus access to instumentation.
IR Cryostat Design IR Cryostat Design

Installation, support and alignment

Vibration stability studies (for nanobeams!)

Utility access requirements (cryogenics, current leads, instrumentation etc.)
Experimental detector interface (with experimental access)

Cold mass optimization
Internal support structure
Thermal management
Internal BPM interface

Topics for Possible Contributions for FCC-ee IR Magnets with MDI
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B. Parker

' In addition to main quad coils, FCC-ee
' needs a slew of correctors (b4, a4, az...).

BNL Direct Wind process is natural for ~ § * . .
. making the necessary correctors. . Double Helical = CCT * H. Witte

N N
o o o

Direct Wind Tapered Double Helical Coil

z-axis [mm]
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Summary

US national labs have significant capabilities that they can utilize to
make the FCC ee IR successful

The labs can provide extensive MDI/IR design capabilities

These capabilities include design, fabrication, alignment, magnet
testing and measurement capabilities

The BNL direct wind capability can provide an excellent means to
address the tight spacing required for the correctors.
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