From LHC to FCC-ee: Guiding I/0 and
Data Storage Software of Future
Multi-decade Experiments with
Lessons Learnt at ATLAS

Alaettin Serhan Mete
Argonne National Laboratory

Second Annual U.S. Future Circular Collider (FCC) Workshop 2024
25-27 March 2024




A brief introduction to ATLAS and Athena

e ATLAS is a general-purpose detector at the Large Hadron Collider (LHC)

e Athena is the open-source software framework of ATLAS
O Based on the Gaudi framework, jointly managed by the ATLAS and the LHCb experiments

O It consists of about 4 (1.5) million lines of C++ (python) code
CMake for building, python for job configuration, and C++ for the framework and the algorithms

S ————— e P _ -~ —

S— —— E— — — = _

\\

* Monte Carlo

Typical ATLAS Data Processing Chain

Name
(Output Format)

Digitization/
Overlay

Event Generation Simulation

(EVNT) (HITS)

Reconstruction Derivation

Analysis

(ESD, AOD) (DAOD)

As one moves down the processing chain
the complexity and event sizes go down

Collision Data



https://gitlab.cern.ch/atlas/athena
https://gitlab.cern.ch/atlas/Gaudi

What is (the ATLAS) Event Data Model (EDM)?

e HEP detectors/experiments (ATLAS, CMS, future ones at FCC ...) are typically highly complex
O They require advanced data model features to efficiently process sophisticated methods transiently

e From the software side, it's extremely important to provide common data objects and interfaces
that can be used across the entire experiment
O Same objects/concepts can be used by, e.g., simulation, reconstruction, physics analysis etc.

e In a nutshell, Event Data Model (EDM) is a collection of -insert language- (e.g., C++) concepts (e.g.,
classes in OOP) that define a common set of detector/physics objects
o E.g., (from silicon hits), Clusters (from calorimeter cells), Electrons, Muons, etc.

e All in all a good EDM:

O Allows efficient processing of highly complex algorithms that maximize throughput
m Typically achieved by using advanced language concepts/features/data structures

O Is isolated from the specific storage technology that is being used by the experiment at any time
m For multi-decade experiments, this is extremely important!

e Moreover, experiments have to read/write data for multiple decades!
O During such a long period of time a lot can (and will) change; processing methods, detectors, etc.

O One way to deal with this is to separate the processing complexity (transient) from persistent data layout

3



Transient - Persistent EDM seperation

e EDM can be separated into in-memory (transient) and on-disk (persistent)

® There are multiple reasons for adopting T/P seperation:

O One can better optimize compute efficiency (transient) and storage efficiency (persistent)
m Usually not all transient information needs to (or can) be stored permanently
m Transient EDM can get arbitrarily complex to ensure efficient processing of data
m Persistent EDM can be much simpler and doing so will save storage space

O One can support schema evolution by maintaining multiple persistent versions

m Objects/definitions will unavoidably change over the course of the experiment!

® ATLAS uses a hybrid EDM that partly adopts T/P separation (primarily for upstream data)

e The main UPSIDE:
O Flexibility and performance
e The main :
O More code to write and maintain

————ttemmmeemSSEESERT

LArRawChannelContainer_p3
Convertors
. #
LArRawChannelContainer —

In memory

Persistent

4



(The ATLAS) Input/Output (1/0) system

e Reading/writing data needs a robust Input/Output (1/0) system:
O Being able to accomplish this throughout the lifetime of the experiment (multiple decades)
O Being able to adopt schema changes throughout the lifetime of the experiment

m Backward, and sometimes forward, compatibility, i.e., read data you wrote 10-20 years ago!

O Being able to do all these in the most compute/storage efficient way possible
m Compute cycles are not cheap, neither is storage!
e Although experiments typically use one main storage technology, it is ideal to:

O Adopt an abstraction layer that allows changing the storage backend relatively easily
m Potentially adopt a second/third technology even if it is experimental

O Avoid hardcoded specific technology APl/features on the EDM/framework side
e ATLAS' I/0 system is based on the primary LCG POOL concepts

O The data storage broken down into a structured hierarchy:

POOL Context File Catalog

O Most importantly, this approach serves as an abstraction layer separating storage and EDM

5


https://arxiv.org/pdf/physics/0306129.pdf

(The ATLAS) Input/Output (I/0) system (cont'd)

e Since the beginning of data taking, ATLAS has used ROOT’s TTree

O This basically means having a ROOT storage service that contains and implements:
m RootDatabase, i.e., ROOT file-level operations, opening/closing TFile etc.

m TreeContainer, i.e.,, ROOT TTree-level operations, creating, filling TTree/TBranch etc.

e For LHC Run 4 (2029), ROOT's primary I/0 sub-system will be RNTuple
O A more modern, compute and storage efficient technology compare to TTree

m [t has a codified specifications (that is not yet finalized but getting there)

O However, one important point is that it is not a drop-in replacement of TTree
m For example, it does not support raw pointers, polymorphism, etc.

e ATLAS has been working on adopting RNTuple for the last 1+ year(s) or so
O ATLAS development went in parallel to the ROOT development (feedback loop)

o We've learned many invaluable lessons adopting this brand new storage backend



https://indico.jlab.org/event/459/contributions/11594/
https://github.com/root-project/root/blob/master/tree/ntuple/v7/doc/specifications.md

(ATLAS) Requirements from the storage backend

® ATLAS needs a set features:
o Plain Old Data (POD), STL vectors (nested), user defined classes/enums

m As an extension, we need some stdlib types, e.g., std::map etc.
O User-defined collection proxies and late model extensions

m Collection proxies hide various EDM complexities from the storage backend, i.e., ROOT I/O
m Late model extensions accommodate data that arrives at any point during processing

O Type-based user code execution when reading data a.k.a. Read Rules

m This feature is needed for initializing (some) data for transient objects and schema evolution

O A void* based interface to bind the I/0 layer with the rest of the framework

e The storage backend should ideally support all these core features
O Otherwise various compromises/adjustments need to be made

® (Most of) These requirements apply to many (future) HEP experiments

7/



What have we learnt from RNTuple migration?

e ATLAS can read/write all applicable data formats in RNTuple!
O Adoption in production still needs a lot of important work and testing/optimization/validation
O Having said that, we're well within (event ahead of) the planned schedule

o A few key earlier design choices eased our work immensely
O Having a simplified EDM when T/P seperation is not adopted (reconstruction to analysis)
O Having T/P seperation for the more complex parts of the EDM (upstream data)
O Most importantly, keeping EDM and storage backend completely separated
e Most of our efforts were focused on collaborating with the ROOT team
O To make sure all features needed by ATLAS are in place

e The separation between the EDM and the storage services meant

o We focused on adopting the new API in a few isolated storage services

O No changes to the EDM and/or any of the client code were needed
m The user doesn't know what the storage backend is and we actually use TTree/RNTuple simultaneously!

8



What should we keep in mind for future experiments?

e Hardware landscape is ever evolving and we should be mindful of that

O Next gen. experiments will need to adopt a more heterogeneous computing model
O When designing a brand new EDM one should keep portability in mind

m When possible benefit/learn from experiment agnostic models such as EDM4Hep of Key4Hep

m Having the simplest EDM that'll get the job done is typically the best option

e Software landscape is also ever evolving and that should be kept in mind
o Specifically for I/0O, pick the “best” backend for the use case but expect changes

m Adopting abstraction layers and T/P separation can significantly ease switching the backend
m Separating the EDM and specific storage backends provide the most flexibility

e Avoid premature optimizations but never underestimate optimizations
O Compute cycles as well as storage are never cheap!

O Be open-minded to lossless/lossy-smart data compressions when applicable
O Embrace the fact that optimization is a never ending process that pays off!

9



https://key4hep.github.io/key4hep-doc/

Conclusions and outlook

e Any new generation experiment should learn from predecessors
O In case of FCC-ee, the LHC experiments are of immense importance!

e Data are the most important assets of any scientific endeavor
O Without a robust way to read/write data, any detector/experiment is practically useless

e A good EDM and I/0 system work in unison and:
O Allow efficient data processing while minimizing the storage footprint

O Embrace emerging technologies and hardware/software developments
O Adopt a healthy dose of separation to ease adopting different storage backends

e In this talk we've looked at ATLAS as a use-case but the idea is universal
O Other large-scale experiments such as CMS also stick to comparable ideas

e We have a deep knowledge and experience from current experiments
O We should certainly take advantage of this!

10



U.S. DEPARTMENT OF

'ENERGY

Argonne

NATIONAL LABORATORY




