
From LHC to FCC-ee: Guiding I/O and
Data Storage Software of Future
Multi-decade Experiments with
Lessons Learnt at ATLAS
Alaettin Serhan Mete
Argonne National Laboratory

Second Annual U.S. Future Circular Collider (FCC) Workshop 2024
25-27 March 2024

A brief introduction to ATLAS and Athena
● ATLAS is a general-purpose detector at the Large Hadron Collider (LHC)
● Athena is the open-source software framework of ATLAS
○ Based on the Gaudi framework, jointly managed by the ATLAS and the LHCb experiments

○ It consists of about 4 (1.5) million lines of C++ (python) code
□CMake for building, python for job configuration, and C++ for the framework and the algorithms

2

Co
lli

si
on

 D
at

a
M

on
te

 C
ar

lo

 Digitization/
 Overlay

 (RDO)

 Simulation
(HITS)

Event Generation
(EVNT)

 Analysis Derivation
 (DAOD)

Reconstruction
(ESD, AOD)

Typical ATLAS Data Processing Chain
Name

(Output Format)

As one moves down the processing chain
the complexity and event sizes go down

(RAW)

https://gitlab.cern.ch/atlas/athena
https://gitlab.cern.ch/atlas/Gaudi

What is (the ATLAS) Event Data Model (EDM)?
● HEP detectors/experiments (ATLAS, CMS, future ones at FCC …) are typically highly complex
○ They require advanced data model features to efficiently process sophisticated methods transiently

● From the software side, it’s extremely important to provide common data objects and interfaces
that can be used across the entire experiment
○ Same objects/concepts can be used by, e.g., simulation, reconstruction, physics analysis etc.

● In a nutshell, Event Data Model (EDM) is a collection of -insert language- (e.g., C++) concepts (e.g.,
classes in OOP) that define a common set of detector/physics objects
○ E.g., Tracks (from silicon hits), Clusters (from calorimeter cells), Electrons, Muons, etc.

● All in all a good EDM:
○ Allows efficient processing of highly complex algorithms that maximize throughput
■ Typically achieved by using advanced language concepts/features/data structures

○ Is isolated from the specific storage technology that is being used by the experiment at any time
■ For multi-decade experiments, this is extremely important!

●Moreover, experiments have to read/write data for multiple decades!
○ During such a long period of time a lot can (and will) change; processing methods, detectors, etc.

○ One way to deal with this is to separate the processing complexity (transient) from persistent data layout
3

Transient - Persistent EDM seperation
● EDM can be separated into in-memory (transient) and on-disk (persistent)
● There are multiple reasons for adopting T/P seperation:
○ One can better optimize compute efficiency (transient) and storage efficiency (persistent)
■ Usually not all transient information needs to (or can) be stored permanently

■ Transient EDM can get arbitrarily complex to ensure efficient processing of data

■ Persistent EDM can be much simpler and doing so will save storage space

○ One can support schema evolution by maintaining multiple persistent versions
■ Objects/definitions will unavoidably change over the course of the experiment!

● ATLAS uses a hybrid EDM that partly adopts T/P separation (primarily for upstream data)

4

LArRawChannelContainer

LArRawChannelContainer_p0

LArRawChannelContainer_p1

LArRawChannelContainer_p2

LArRawChannelContainer_p3
Convertors

● The main UPSIDE:
○ Flexibility and performance

● The main DOWNSIDE:
○ More code to write and maintainIn memory Persistent

(The ATLAS) Input/Output (I/O) system
● Reading/writing data needs a robust Input/Output (I/O) system:
○ Being able to accomplish this throughout the lifetime of the experiment (multiple decades)

○ Being able to adopt schema changes throughout the lifetime of the experiment
■ Backward, and sometimes forward, compatibility, i.e., read data you wrote 10-20 years ago!

○ Being able to do all these in the most compute/storage efficient way possible
■ Compute cycles are not cheap, neither is storage!

● Although experiments typically use one main storage technology, it is ideal to:
○ Adopt an abstraction layer that allows changing the storage backend relatively easily
■ Potentially adopt a second/third technology even if it is experimental

○ Avoid hardcoded specific technology API/features on the EDM/framework side

● ATLAS’ I/O system is based on the primary LCG POOL concepts
○ The data storage broken down into a structured hierarchy:

○ Most importantly, this approach serves as an abstraction layer separating storage and EDM
5

 Object Container Database File CatalogPOOL Context

https://arxiv.org/pdf/physics/0306129.pdf

(The ATLAS) Input/Output (I/O) system (cont’d)
● Since the beginning of data taking, ATLAS has used ROOT’s TTree
○ This basically means having a ROOT storage service that contains and implements:
■ RootDatabase, i.e., ROOT file-level operations, opening/closing TFile etc.

■ TreeContainer, i.e., ROOT TTree-level operations, creating, filling TTree/TBranch etc.

● For LHC Run 4 (2029), ROOT’s primary I/O sub-system will be RNTuple
○ A more modern, compute and storage efficient technology compare to TTree
■ It has a codified specifications (that is not yet finalized but getting there)

○ However, one important point is that it is not a drop-in replacement of TTree
■ For example, it does not support raw pointers, polymorphism, etc.

● ATLAS has been working on adopting RNTuple for the last 1+ year(s) or so
○ ATLAS development went in parallel to the ROOT development (feedback loop)

○ We’ve learned many invaluable lessons adopting this brand new storage backend

6

https://indico.jlab.org/event/459/contributions/11594/
https://github.com/root-project/root/blob/master/tree/ntuple/v7/doc/specifications.md

(ATLAS) Requirements from the storage backend
● ATLAS needs a set features:
○ Plain Old Data (POD), STL vectors (nested), user defined classes/enums
■ As an extension, we need some stdlib types, e.g., std::map etc.

○ User-defined collection proxies and late model extensions
■ Collection proxies hide various EDM complexities from the storage backend, i.e., ROOT I/O

■ Late model extensions accommodate data that arrives at any point during processing

○ Type-based user code execution when reading data a.k.a. Read Rules
■ This feature is needed for initializing (some) data for transient objects and schema evolution

○ A void* based interface to bind the I/O layer with the rest of the framework

● The storage backend should ideally support all these core features
○ Otherwise various compromises/adjustments need to be made

● (Most of) These requirements apply to many (future) HEP experiments

7

What have we learnt from RNTuple migration?
● ATLAS can read/write all applicable data formats in RNTuple!
○ Adoption in production still needs a lot of important work and testing/optimization/validation

○ Having said that, we’re well within (event ahead of) the planned schedule

● A few key earlier design choices eased our work immensely
○ Having a simplified EDM when T/P seperation is not adopted (reconstruction to analysis)

○ Having T/P seperation for the more complex parts of the EDM (upstream data)

○ Most importantly, keeping EDM and storage backend completely separated

●Most of our efforts were focused on collaborating with the ROOT team
○ To make sure all features needed by ATLAS are in place

● The separation between the EDM and the storage services meant
○ We focused on adopting the new API in a few isolated storage services

○ No changes to the EDM and/or any of the client code were needed
■ The user doesn’t know what the storage backend is and we actually use TTree/RNTuple simultaneously!

8

What should we keep in mind for future experiments?
● Hardware landscape is ever evolving and we should be mindful of that
○ Next gen. experiments will need to adopt a more heterogeneous computing model

○ When designing a brand new EDM one should keep portability in mind
■ When possible benefit/learn from experiment agnostic models such as EDM4Hep of Key4Hep

■ Having the simplest EDM that’ll get the job done is typically the best option

● Software landscape is also ever evolving and that should be kept in mind
○ Specifically for I/O, pick the “best” backend for the use case but expect changes
■ Adopting abstraction layers and T/P separation can significantly ease switching the backend

■ Separating the EDM and specific storage backends provide the most flexibility

● Avoid premature optimizations but never underestimate optimizations
○ Compute cycles as well as storage are never cheap!

○ Be open-minded to lossless/lossy-smart data compressions when applicable

○ Embrace the fact that optimization is a never ending process that pays off!
9

https://key4hep.github.io/key4hep-doc/

Conclusions and outlook
● Any new generation experiment should learn from predecessors
○ In case of FCC-ee, the LHC experiments are of immense importance!

● Data are the most important assets of any scientific endeavor
○ Without a robust way to read/write data, any detector/experiment is practically useless

● A good EDM and I/O system work in unison and:
○ Allow efficient data processing while minimizing the storage footprint

○ Embrace emerging technologies and hardware/software developments

○ Adopt a healthy dose of separation to ease adopting different storage backends

● In this talk we’ve looked at ATLAS as a use-case but the idea is universal
○ Other large-scale experiments such as CMS also stick to comparable ideas

●We have a deep knowledge and experience from current experiments
○ We should certainly take advantage of this!

10

