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A brief introduction to ATLAS and Athena
● ATLAS is a general-purpose detector at the Large Hadron Collider (LHC) 
● Athena is the open-source software framework of ATLAS 
○ Based on the Gaudi framework, jointly managed by the ATLAS and the LHCb experiments 

○ It consists of about 4 (1.5) million lines of C++ (python) code 
□CMake for building, python for job configuration, and C++ for the framework and the algorithms
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https://gitlab.cern.ch/atlas/athena
https://gitlab.cern.ch/atlas/Gaudi


What is (the ATLAS) Event Data Model (EDM)?
● HEP detectors/experiments (ATLAS, CMS, future ones at FCC …) are typically highly complex 
○ They require advanced data model features to efficiently process sophisticated methods transiently 

● From the software side, it’s extremely important to provide common data objects and interfaces 
that can be used across the entire experiment 
○ Same objects/concepts can be used by, e.g., simulation, reconstruction, physics analysis etc. 

● In a nutshell, Event Data Model (EDM) is a collection of -insert language- (e.g., C++) concepts (e.g., 
classes in OOP) that define a common set of detector/physics objects 
○ E.g., Tracks (from silicon hits), Clusters (from calorimeter cells), Electrons, Muons, etc. 

● All in all a good EDM: 
○ Allows efficient processing of highly complex algorithms that maximize throughput 
■ Typically achieved by using advanced language concepts/features/data structures 

○ Is isolated from the specific storage technology that is being used by the experiment at any time 
■ For multi-decade experiments, this is extremely important! 

●Moreover, experiments have to read/write data for multiple decades! 
○ During such a long period of time a lot can (and will) change; processing methods, detectors, etc. 

○ One way to deal with this is to separate the processing complexity (transient) from persistent data layout
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Transient - Persistent EDM seperation
● EDM can be separated into in-memory (transient) and on-disk (persistent) 
● There are multiple reasons for adopting T/P seperation: 
○ One can better optimize compute efficiency (transient) and storage efficiency (persistent) 
■ Usually not all transient information needs to (or can) be stored permanently 

■ Transient EDM can get arbitrarily complex to ensure efficient processing of data 

■ Persistent EDM can be much simpler and doing so will save storage space 

○ One can support schema evolution by maintaining multiple persistent versions 
■ Objects/definitions will unavoidably change over the course of the experiment!  

● ATLAS uses a hybrid EDM that partly adopts T/P separation (primarily for upstream data)
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● The main UPSIDE: 
○ Flexibility and performance 

● The main DOWNSIDE: 
○ More code to write and maintainIn memory Persistent



(The ATLAS) Input/Output (I/O) system
● Reading/writing data needs a robust Input/Output (I/O) system: 
○ Being able to accomplish this throughout the lifetime of the experiment (multiple decades) 

○ Being able to adopt schema changes throughout the lifetime of the experiment 
■ Backward, and sometimes forward, compatibility, i.e., read data you wrote 10-20 years ago! 

○ Being able to do all these in the most compute/storage efficient way possible 
■ Compute cycles are not cheap, neither is storage! 

● Although experiments typically use one main storage technology, it is ideal to: 
○ Adopt an abstraction layer that allows changing the storage backend relatively easily 
■ Potentially adopt a second/third technology even if it is experimental 

○ Avoid hardcoded specific technology API/features on the EDM/framework side  

● ATLAS’ I/O system is based on the primary LCG POOL concepts 
○ The data storage broken down into a structured hierarchy: 

○ Most importantly, this approach serves as an abstraction layer separating storage and EDM
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https://arxiv.org/pdf/physics/0306129.pdf


(The ATLAS) Input/Output (I/O) system (cont’d)
● Since the beginning of data taking, ATLAS has used ROOT’s TTree 
○ This basically means having a ROOT storage service that contains and implements: 
■ RootDatabase, i.e., ROOT file-level operations, opening/closing TFile etc. 

■ TreeContainer, i.e., ROOT TTree-level operations, creating, filling TTree/TBranch etc. 

● For LHC Run 4 (2029), ROOT’s primary I/O sub-system will be RNTuple 
○ A more modern, compute and storage efficient technology compare to TTree 
■ It has a codified specifications (that is not yet finalized but getting there) 

○ However, one important point is that it is not a drop-in replacement of TTree 
■ For example, it does not support raw pointers, polymorphism, etc. 

● ATLAS has been working on adopting RNTuple for the last 1+ year(s) or so 
○ ATLAS development went in parallel to the ROOT development (feedback loop) 

○ We’ve learned many invaluable lessons adopting this brand new storage backend
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https://indico.jlab.org/event/459/contributions/11594/
https://github.com/root-project/root/blob/master/tree/ntuple/v7/doc/specifications.md


(ATLAS) Requirements from the storage backend
● ATLAS needs a set features: 
○ Plain Old Data (POD), STL vectors (nested), user defined classes/enums 
■ As an extension, we need some stdlib types, e.g., std::map etc. 

○ User-defined collection proxies and late model extensions 
■ Collection proxies hide various EDM complexities from the storage backend, i.e., ROOT I/O 

■ Late model extensions accommodate data that arrives at any point during processing 

○ Type-based user code execution when reading data a.k.a. Read Rules 
■ This feature is needed for initializing (some) data for transient objects and schema evolution 

○ A void* based interface to bind the I/O layer with the rest of the framework 

● The storage backend should ideally support all these core features 
○ Otherwise various compromises/adjustments need to be made 

● (Most of) These requirements apply to many (future) HEP experiments
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What have we learnt from RNTuple migration?
● ATLAS can read/write all applicable data formats in RNTuple! 
○ Adoption in production still needs a lot of important work and testing/optimization/validation 

○ Having said that, we’re well within (event ahead of) the planned schedule 

● A few key earlier design choices eased our work immensely 
○ Having a simplified EDM when T/P seperation is not adopted (reconstruction to analysis) 

○ Having T/P seperation for the more complex parts of the EDM (upstream data) 

○ Most importantly, keeping EDM and storage backend completely separated 

●Most of our efforts were focused on collaborating with the ROOT team 
○ To make sure all features needed by ATLAS are in place 

● The separation between the EDM and the storage services meant 
○ We focused on adopting the new API in a few isolated storage services 

○ No changes to the EDM and/or any of the client code were needed 
■ The user doesn’t know what the storage backend is and we actually use TTree/RNTuple simultaneously!
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What should we keep in mind for future experiments?
● Hardware landscape is ever evolving and we should be mindful of that 
○ Next gen. experiments will need to adopt a more heterogeneous computing model 

○ When designing a brand new EDM one should keep portability in mind 
■ When possible benefit/learn from experiment agnostic models such as EDM4Hep of Key4Hep 

■ Having the simplest EDM that’ll get the job done is typically the best option 

● Software landscape is also ever evolving and that should be kept in mind 
○ Specifically for I/O, pick the “best” backend for the use case but expect changes 
■ Adopting abstraction layers and T/P separation can significantly ease switching the backend 

■ Separating the EDM and specific storage backends provide the most flexibility 

● Avoid premature optimizations but never underestimate optimizations 
○ Compute cycles as well as storage are never cheap! 

○ Be open-minded to lossless/lossy-smart data compressions when applicable 

○ Embrace the fact that optimization is a never ending process that pays off!
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https://key4hep.github.io/key4hep-doc/


Conclusions and outlook
● Any new generation experiment should learn from predecessors 
○ In case of FCC-ee, the LHC experiments are of immense importance! 

● Data are the most important assets of any scientific endeavor 
○ Without a robust way to read/write data, any detector/experiment is practically useless 

● A good EDM and I/O system work in unison and: 
○ Allow efficient data processing while minimizing the storage footprint 

○ Embrace emerging technologies and hardware/software developments 

○ Adopt a healthy dose of separation to ease adopting different storage backends 

● In this talk we’ve looked at ATLAS as a use-case but the idea is universal 
○ Other large-scale experiments such as CMS also stick to comparable ideas 

●We have a deep knowledge and experience from current experiments 
○ We should certainly take advantage of this!
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