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1. Speed  Fast simulations

• Needed for HL-LHC

• Useful for preliminary FCC studies, perhaps for operation as well (GPUs!)

⇒

2. Differentiability  Optimizing detector design

• O(100-1000s) of detector parameters to tune for ultimate precision

• Can we do this systematically: optimize simultaneously for maximum H/Z 
coupling etc. sensitivities + cost

⇒
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1. Rewrite existing code with automatic differentiation (e.g. JAX)

• Challenges: differentiating through discrete or stochastic steps (e.g. splittings, 
clustering)

2. Surrogate models: train ML algorithms on inputs and desired outputs

• Heterogeneous models for each step

• Challenges: model accuracy, interpretability, validation + incorporating discrete 
parameters
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METHODS AND EXAMPLES
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AUTO-DIFFERENTIATION

MadJax (Differentiable MadGraph) 
L. Heinrich and M. Kagan (2023)

Derivatives of discrete and random processes 
L. Heinrich and M. Kagan (2023)

• Estimating gradients using 
stochastic AD and score

• Optimizing for toy 
detector inner radius

*Review 2403.14606 

https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012137
https://arxiv.org/abs/2308.16680
https://arxiv.org/abs/2403.14606
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AUTO-DIFFERENTIATION

MadJax (Differentiable MadGraph) 
L. Heinrich and M. Kagan (2023)

Derivatives of discrete and random processes 
L. Heinrich and M. Kagan (2023)

• Estimating gradients using 
stochastic AD and score

• Optimizing for toy 
detector inner radius

*Review 2403.14606 

neos: Optimizing directly for p-values / FoMs 
N. Simpson and L. Heinrich (2023)

• Tested on 2D toy problem with uncertainties

https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012137
https://arxiv.org/abs/2308.16680
https://arxiv.org/abs/2403.14606
https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012105
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SURROGATE MODELS FOR 
SIMULATIONS
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• Can we learn model  for the underlying data distribution  by directly 
training on expected (stochastic) outputs?

pθ(x) p(x)
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ML LANDSCAPE

• Learn transformations from simpler  to 

• Access to exact likelihood

• But restrictive

π(z) p(x)

• Maximise an approximation to the likelihood

• Can also be restrictive

• Minimise loss wrt to discriminator classifying real or fake

• Less restrictive, generally higher performing

• Difficult to train

• Learn  (score) instead of  directly

• Less restrictive, score doesn’t need to be normalised

• Current industry SOTA (DALL-E, StableDiffusion etc.)

• But slow - need O(100)s of steps along the score

−∂ ln p(x)/∂x p(x)

Flows

π(z) p(x)

z

x

Generative Adversarial Networks (GANs)

Variational Autoencoders (VAEs)

(Score-based) Diffusion
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OPTIMIZING THE SHIP MAGNET

• “Search for Hidden Particles” (SHiP) 
experiment proposed at the CERN SPS

SHiP Collaboration (2022) 
A Baranov et al. (2017)

https://arxiv.org/abs/2112.01487
https://iopscience.iop.org/article/10.1088/1742-6596/934/1/012050/pdf
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• Optimizing 42 parameters of SHiP’s muon shield magnets

• GAN, flows and Gaussian process surrogate models used for simulations

• Used to estimate gradients and optimize for muon shielding + cost
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OPTIMIZING THE SHIP MAGNET

• “Search for Hidden Particles” (SHiP) 
experiment proposed at the CERN SPS

SHiP Collaboration (2022) 
A Baranov et al. (2017)

Shirobokov et al. (2020) 

https://arxiv.org/abs/2112.01487
https://iopscience.iop.org/article/10.1088/1742-6596/934/1/012050/pdf
https://arxiv.org/pdf/2002.04632.pdf
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https://arxiv.org/abs/2109.02551


Raghav Kansal

• asdf

• asdf

9

ATLAS FASTSIM

AtlFast3, ATLAS Collaboration 2022

• GANs used already for fast sim 

• One component of “AtlFast3”

• 7B events for Run 2 analyses!

https://arxiv.org/abs/2109.02551


Raghav Kansal

• asdf

• asdf

9

ATLAS FASTSIM

AtlFast3, ATLAS Collaboration 2022

• GANs used already for fast sim 

• One component of “AtlFast3”

• 7B events for Run 2 analyses!

• Trained on hadron shower images

https://arxiv.org/abs/2109.02551


Raghav Kansal

• asdf

• asdf

9

ATLAS FASTSIM

AtlFast3, ATLAS Collaboration 2022

• GANs used already for fast sim 

• One component of “AtlFast3”

• 7B events for Run 2 analyses!

• Trained on hadron shower images

• Reasonable performance but:

• Room for improvement

• “Voxelisation” to deal with sparsity 
and high granularity 

• 300 GANs trained for each E,  binη

https://arxiv.org/abs/2109.02551


Raghav Kansal

• Idea: learn distribution of hits per gen particle i.e. surrogate for GEANT

10

CALORIMETER SHOWERS



Raghav Kansal

• Idea: learn distribution of hits per gen particle i.e. surrogate for GEANT

10

CALORIMETER SHOWERS

*A100 GPU



Raghav Kansal

• Idea: learn distribution of hits per gen particle i.e. surrogate for GEANT

10

CALORIMETER SHOWERS

*A100 GPU

• VAE + GAN + postprocessing

• 0.1µs/shower*

• Series of normalising flows

• 7µs/shower*

• Compared to /shower with GEANTO(10s)

• Reproducing shower images

• Good agreement with simplified 
ILD-like single γ showers

L2LFlows (2302.11594)BIB-AE (2112.09709) Sample GEANT shower

https://arxiv.org/abs/2112.09709
https://arxiv.org/abs/2302.11594
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CALORIMETER SHOWERS

*A100 GPU

• VAE + GAN + postprocessing

• 0.1µs/shower*

• Series of normalising flows

• 7µs/shower*

• Compared to /shower with GEANTO(10s)

• Reproducing shower images

• Good agreement with simplified 
ILD-like single γ showers

L2LFlows (2302.11594)BIB-AE (2112.09709) Sample GEANT shower

• Diffusion based models

• Good agreement with different datasets

• Generally slower than GANs

• 0.3s/shower*

CaloScore (2206.11898) CaloDiffusion (CHEP 2023)

https://arxiv.org/abs/2112.09709
https://arxiv.org/abs/2302.11594
https://indico.jlab.org/event/459/contributions/11736/
https://arxiv.org/abs/2206.11898
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JETS

*Single GPU

• GANs

• Point-cloud based

• Generally better suited to 
HEP data

• Graph neural networks, 
transformers, and deep sets

• Good agreement with 
simplified CMS-like jets

• All ≤ (10µs)/jet*O

Gluon Jets

MPGAN (2106.11535) GAPT (2211.10295) EPiC-GAN (2301.08128)

https://arxiv.org/abs/2211.10295
https://arxiv.org/abs/2301.08128
https://arxiv.org/abs/2106.11535
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JETS

*Single GPU

• GANs

• Point-cloud based

• Generally better suited to 
HEP data

• Graph neural networks, 
transformers, and deep sets

• Good agreement with 
simplified CMS-like jets

• All ≤ (10µs)/jet*O

Gluon Jets

MPGAN (2106.11535) GAPT (2211.10295) EPiC-GAN (2301.08128)

• Diffusion models

• Also point-cloud based

• Good agreement

• Slower than GANs

• (1ms)/jet*

• But distillation brings this down to (10µs)/jet

O

O

PC-JeDi (2303.05376)

FPCD (2304.01266)

https://arxiv.org/abs/2211.10295
https://arxiv.org/abs/2301.08128
https://arxiv.org/abs/2106.11535
https://arxiv.org/abs/2304.01266
https://arxiv.org/abs/2303.05376
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ML FOR RECONSTRUCTION
ML for CMS HGCAL 
S. Bhattacharya et al. (2023), SR Qasim et al., (2021)
• Hits → tracks + clusters with GNNs

https://arxiv.org/abs/2203.01189
https://arxiv.org/pdf/2106.01832.pdf
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ML FOR RECONSTRUCTION
ML for ParticleFlow 
Pata et al., 2021-24

• Strong results for CMS and CLIC detectors

• Learning PF (tracks + clusters → particles) with GNNs

ML for CMS HGCAL 
S. Bhattacharya et al. (2023), SR Qasim et al., (2021)
• Hits → tracks + clusters with GNNs

https://github.com/jpata/particleflow
https://arxiv.org/abs/2203.01189
https://arxiv.org/pdf/2106.01832.pdf
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NEXT STEPS FOR FCC:
HOW DO WE CONVERGE?
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• Need datasets to train / benchmark models

14

DATASETS

• Next step: FCC datasets! FCC Challenge 2025/26?

• Public “challenge” for calorimeter simulations

• 3 image-based datasets based on ATLAS-like 
and general detectors

CaloChallenge 2022-23

• Public library and (collection of) jet datasets

• All point-cloud based, simplified reco

• Basis for majority of recent work on jets

JetNet

JetNet

https://calochallenge.github.io/homepage/
https://github.com/jet-net/JetNet
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• Many multivariate GoF tests studied
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• Need standard, quantitative metrics to compare, validate, and trust models

• Studied in detail in 2211.10295 in terms of two-sample GoF tests

• Traditional method is looking at 1 or 2D histograms

• Should be quantified, can miss correlations

• Many multivariate GoF tests studied

• Fréchet and kernel physics distances found to be most sensitive

• Starting to be adopted for jets

• Need to establish recommendations

• See talks in PHYSTAT
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EVALUATION METRICS

https://arxiv.org/abs/2211.10295
https://indico.cern.ch/event/1258983/timetable/#6-applications-to-deep-generat
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• ML-based simulations offer speed and differentiability

• Necessary for optimal detector design

• Many examples and new R&D approaches now in HEP

• Outlook for FCC studies:

• Need R&D on auto-differentiation and surrogate model accuracy

• Need to establish datasets

• Need to validate rigorously

• Integration with Key4hep
16

CONCLUSION


