MACHINE LEARNING FOR FUTURE COLLIDER SIMULATIONS

Raghav Kansal UC San Diego, Fermilab

US FCC Workshop 26th March 2024

WHY?

WHY?

- I. Speed \Rightarrow Fast simulations
 - Needed for HL-LHC
 - Useful for preliminary FCC studies, perhaps for operation as well (GPUs!)

WHY?

- I. Speed \Rightarrow Fast simulations
 - Needed for HL-LHC
 - Useful for preliminary FCC studies, perhaps for operation as well (GPUs!)

- 2. Differentiability \Rightarrow Optimizing detector design
 - O(100-1000s) of detector parameters to tune for ultimate precision
 - Can we do this systematically: optimize simultaneously for maximum H/Z coupling etc. sensitivities + cost

I. Rewrite existing code with automatic differentiation (e.g. JAX)

• Challenges: differentiating through discrete or stochastic steps (e.g. splittings, clustering)

I. Rewrite existing code with automatic differentiation (e.g. JAX)

- Challenges: differentiating through discrete or stochastic steps (e.g. splittings, clustering)
- 2. Surrogate models: train ML algorithms on inputs and desired outputs
 - Heterogeneous models for each step
 - Challenges: model accuracy, interpretability, validation + incorporating discrete parameters

METHODS AND EXAMPLES

AUTO-DIFFERENTIATION

Keep track of gradients at each step → repeated chain rule*

AUTO-DIFFERENTIATION

Keep track of gradients at each step → repeated chain rule*

AUTO-DIFFERENTIATION

Keep track of gradients at each step → repeated chain rule*

neos: Optimizing directly for p-values / FoMs N. Simpson and L. Heinrich (2023)

• Tested on 2D toy problem with uncertainties

SIMULATIONS

• Can we learn model $p_{\theta}(\mathbf{x})$ for the underlying data distribution $p(\mathbf{x})$ by directly training on expected (stochastic) outputs?

ML LANDSCAPE

OPTIMIZING THE SHIP MAGNET

SHiP Collaboration (2022) A Baranov et al. (2017)

• "Search for Hidden Particles" (SHiP) experiment proposed at the CERN SPS

OPTIMIZING THE SHIP MAGNET

• Optimizing 42 parameters of SHiP's muon shield magnets

SHiP Collaboration (2022) A Baranov et al. (2017)

• "Search for Hidden Particles" (SHiP) experiment proposed at the CERN SPS

OPTIMIZING THE SHIP MAGNET

- Optimizing 42 parameters of SHiP's muon shield magnets
- GAN, flows and Gaussian process surrogate models used for simulations
 - Used to estimate gradients and optimize for muon shielding + cost

Shirobokov et al. (2020)

 "Search for Hidden Particles" (SHiP) experiment proposed at the CERN SPS
Image: Comparison of the search of the sear

- GANs used already for fast sim
 - One component of "AtlFast3"
 - 7B events for Run 2 analyses!

0.05

Energy [GeV]

Energy [GeV]

Energy [GeV]

- · GANs used already for fast sim
 - One component of "AtlFast3"
 - 7B events for Run 2 analyses!
- Trained on hadron shower images

0.0

Energy [GeV]

0.04

0.02

- GANs used already for fast sim
 - One component of "AtlFast3"
 - 7B events for Run 2 analyses!
- Trained on hadron shower images
- Reasonable performance but:
 - Room for improvement
 - "Voxelisation" to deal with sparsity and high granularity
 - 300 GANs trained for each E, η bin

• Idea: learn distribution of hits per gen particle i.e. surrogate for GEANT

• Idea: learn distribution of hits per gen particle i.e. surrogate for GEANT

• Idea: learn distribution of hits per gen particle i.e. surrogate for GEANT

• Idea: learn distribution of hits per gen particle i.e. surrogate for GEANT

10

JETS

• Idea: learn distribution of reco-particles per gen parton i.e., surrogate for Pythia + GEANT + reco

JETS

• Idea: learn distribution of reco-particles per gen parton i.e., surrogate for Pythia + GEANT + reco

JETS

• Idea: learn distribution of reco-particles per gen parton i.e., surrogate for Pythia + GEANT + reco

ML FOR RECONSTRUCTION

ML FOR RECONSTRUCTION

ML FOR RECONSTRUCTION

NEXT STEPS FOR FCC: HOW DO WE CONVERGE?

- Public "challenge" for calorimeter simulations
- 3 image-based datasets based on ATLAS-like and general detectors

- Public "challenge" for calorimeter simulations
- 3 image-based datasets based on ATLAS-like and general detectors

- Public library and (collection of) jet datasets
- All point-cloud based, simplified reco
- Basis for majority of recent work on jets

- Public "challenge" for calorimeter simulations
- 3 image-based datasets based on ATLAS-like and general detectors

- Public library and (collection of) jet datasets
- All point-cloud based, simplified reco
- Basis for majority of recent work on jets
- Next step: FCC datasets! FCC Challenge 2025/26?

• Need standard, quantitative metrics to compare, validate, and trust models

- Need standard, quantitative metrics to compare, validate, and trust models
- Studied in detail in <u>2211.10295</u> in terms of two-sample GoF tests
 - Traditional method is looking at 1 or 2D histograms
 - Should be quantified, can miss correlations
 - Many multivariate GoF tests studied
 - Fréchet and kernel physics distances found to be most sensitive

- Need standard, quantitative metrics to compare, validate, and trust models
- Studied in detail in <u>2211.10295</u> in terms of two-sample GoF tests
 - Traditional method is looking at 1 or 2D histograms
 - Should be quantified, can miss correlations
 - Many multivariate GoF tests studied
 - Fréchet and kernel physics distances found to be most sensitive
- Starting to be adopted for jets

	FPD $\times 10^3$	KPD $\times 10^3$	$W^M_1 imes 10^3$	$W_{1p}^{p_{\mathrm{T}}^{\mathrm{rel}}}$ $ imes 10^3$
Truth	0.08 ± 0.03	-0.006 ± 0.005	0.28 ± 0.05	0.44 ± 0.09
MPGAN	0.30 ± 0.06	-0.001 ± 0.004	0.54 ± 0.06	0.6 ± 0.2
GAPT	0.66 ± 0.09	0.001 ± 0.005	0.56 ± 0.08	0.51 ± 0.09

- Need standard, quantitative metrics to compare, validate, and trust models
- Studied in detail in <u>2211.10295</u> in terms of two-sample GoF tests
 - Traditional method is looking at 1 or 2D histograms
 - Should be quantified, can miss correlations
 - Many multivariate GoF tests studied
 - Fréchet and kernel physics distances found to be most sensitive
- Starting to be adopted for jets

	FPD $\times 10^3$	KPD $\times 10^3$	$W^M_1 imes 10^3$	$W_{1p}^{p_{\mathrm{T}}^{\mathrm{rel}}}$ $ imes 10^3$
Truth	0.08 ± 0.03	-0.006 ± 0.005	0.28 ± 0.05	0.44 ± 0.09
MPGAN	0.30 ± 0.06	-0.001 ± 0.004	0.54 ± 0.06	0.6 ± 0.2
GAPT	0.66 ± 0.09	0.001 ± 0.005	0.56 ± 0.08	0.51 ± 0.09

- Need to establish recommendations
 - See talks in <u>PHYSTAT</u>

CONCLUSION

• ML-based simulations offer speed and differentiability

Necessary for optimal detector design

• Many examples and new R&D approaches now in HEP

- Outlook for FCC studies:
 - Need R&D on auto-differentiation and surrogate model accuracy
 - Need to establish datasets
 - Need to validate rigorously
 - Integration with Key4hep