

Development of precision tracking and quantum detectors at Fermilab

Artur Apresyan

Second Annual U.S. Future Circular Collider (FCC) Workshop 2024 26 March 2024

MAPS design efforts with Skywater

• GOALS

- US manufactured sensor capability for HEP experiments
- Optimize the process towards HEP sensors
- Co-design sensor and readout electronics
- Broad adoption of development in community

• HOW?

- Partner with Skywater Technologies
- Strong support from UC, UIC, Purdue, UIUC, Cornell, for device simulation and testing
- Engineering run with various designs
- Testing of sensors at Fermilab and partners

Commercial Partner

- Most advanced process among HEP MAPS
 - Fabricated on SkyWater's **90 nm** process
 - Demonstrate domestic production for future HEP experiments
- We will work with SkyWater to modify their standard epitaxial silicon layer
 - Adapt and optimize SkyWater process to develop particle detectors
 - Use thicker, higher-resistivity epitaxy with deep-well implants on a standard CMOS substrate
 - The standard CMOS process flow can then be used to fabricate IC resulting in a monolithic sensor with integrated signal processing

Simulations

- TCAD simulations were used to establish the feasibility of the proposed work, and we started discussions with SkyWater.
 - The initial TCAD studies for SkyWater CMOS are based on our previous work to establish designs for 8" sensor wafer production

🚰 Fermilab

Simulations

- Depleted CMOS sensor operation can be limited by the fields in the region of the deep wells causing breakdown or affecting transistor operation.
 - Processes designed for HV operation have been studied in RD50
 - While the SkyWater 90 nm process is not an explicit HV design, it is likely compatible with the fields in fully depleted sensors
 - Can mitigate the fields near the wells with deep n-implant

- Substrate current pulses for bias voltages from 250 (brown) to 405 (red) volts showing the onset of gain.
- Rise time of the top electrodes will be determined by the details of the **CMOS** well capacitance

Project Deliverables

- Design and manufacture sensors using SkyWater's 90 nm CMOS process
- Create a HEP specific MPW run
 - Reticle divided into dies of varying designs: ½ wafer with only sensors and
 ½ wafer with sensors & readout circuits
 - Perform detailed characterization of MAPS, LGAD, and SPAD detectors, and quantify their performance for HEP
- Create a US-based silicon sensor manufacturing facility for next generation HEP/NP experiments
 - Enable US-teams to lead the design and fabrication of tracking detector(s) for a future Higgs factory
 - Enable a broad participation of university groups in cutting edge instrumentation

3D-integrated sensors project

- Development of low-power, highly granular detectors in (\vec{x}, t)
 - Required to achieve breakthroughs across HEP, NP, BES, and FES
 - Adoption of 3D-integration has been cost-prohibitive in academia
- Supported by DOE "Accelerated Innovation in Emerging Technologies"
 - Joint development effort of SLAC and FNAL teams
 - Partner with industry leaders to implement new technologies
 - Design goal is to achieve position resolution ~5 μm , timing ~ 5-10 ps

Objectives

- The research program consists of three main thrusts towards developing the proposed detector:
 - Thrust 1: Design and manufacture Low-Gain Avalanche Diodes (LGADs) devices compatible with 12" foundry processes
 - **Thrust 2:** Design application specific integrated circuit (ASIC) techniques to meet various application needs for granularity, precision timing, and power.
 - **Thrust 3:** Enable a new generation of particle detectors that utilize 3D-integration, combining state-of-the-art 12" wafers from different foundries.

Applications in High Energy Physics (HEP)

- CMS and ATLAS are building first-generation detectors
 - Very coarse position resolution, around 30-40 ps timing
- First demonstration of simultaneous ~5 μm, ~30 ps resolutions with AC-LGADs beam: technology for 4D-trackers!

Applications in Nuclear Fusion Energy Research

- Exciting results recently at LLNL Ignition Facility
 - Net energy gain fusion reaction achieved
- Neutron spectrometers and low signal high speed imaging
 - Neutron spectrometer using time stamping single hit detector
 - Neutron TOF detectors need wider dynamic range

M. B. Nelson, M. D. Cable; LaNSA: A large neutron scintillator array for neutron spectroscopy at Nova. Rev. Sci. Instrum. 1 October 1992; 63 (10): 4874–4876. https://doi.org/10.1063/1.1143536

Other applications

Lidars and Automotive

Coulomb explosion imaging

Bio Imaging and Life Science

Astro-particle physics

Advanced manufacturing

Fast timing applications

Quantum science and cryptography

Development of sensors

- Produce sensors on 12" wafers with a commercial partner
 - Process is a 10 μm epi; 130-150 Ohm-cm resistivity
- We performed simulations to study the feasibility of both gain and timing performance using vendor's parameters

Pulse simulations

- Simulations of a "standard" LGAD and partner's 65 nm process.
 - "Standard" process 20 μm thick high resistivity
 - "Partner" process 10 μm thick, moderate resistivity
- Signals from "partner" process are narrower and faster rise time

🚰 Fermilab

Additional processing

- The basic functionality of the device looks good with 10 μm epitaxy.
- Additional structures to be produced:
 - DC LGAD: "standard" devices
 - AC LGAD: 100% fill factor, good position resolution
 - Deep junction LGAD: for higher radiation hardness
- Working closely with our partner on the design of sensors

Development of ICs

- During the 1st stage we are working to optimize and produce ASIC prototypes on MPW runs to identify the best solutions
 - Technology: the HEP community's choice for the future 28 nm
 - Low Noise Amplifier: tuned for capacitances of smaller pixels
 - **Discriminator:** Design simple and robust discriminator for low-power
 - TDC: dominant consumer for devices with many small pixels, need innovative solutions

Development of ICs

Designs for BES applications

 The principal difference of applications is a requirement to also measure the deposited energy for soft X-ray imaging

Designs for FES applications

- Inertial Confinement Fusion (ICF) experiments measure peak plasma burn durations below 100 ps: need to sample with precision ~10 ps
- X-ray imaging requires full 2D image samples over this burn history

	SparkPix-ED	SparkPix-RT	SparkPix-T	SparkPix-S
Front-end	energy	energy	timing	energy
Information extraction	triggering	data compression	sparse readout	sparse readout
Frame-rate	1 MHz / 100 kHz CW	100 kHz	1 MHz	1 MHz
Picture / Layout				

hCMOS UXI Sensors coupled with LGADs could open up many low energy/low signal high speed imaging applications

Smart Pixels project

- Al embedded on a chip to:
 - Filter data at the source to enable data reduction
 - Take advantage of pixel information to enable new physics measurements and searches
- Data reduction through
 - Filtering through removing low p_T clusters
 - Featurization through converting raw data to physics information

High p_T clusters

1 MHz

High

AI on ASIC

 Combination of approaches can reduce data rate enough to use pixel information at Level 1

Simulation

- Simulated charge deposition from pions
- Assume a futuristic pixel detector
 - 21x13 array of pixels
 - 50x12.5 μ m pitch, 100 μ m thickness
 - Located at radius of 30 mm
 - 3.8 T magnetic field
 - Time steps of 200 picoseconds
- Use ML due to complicated pulse shapes, and drift & induced currents
 - y-profile is sensitive particle's p_T
 - x-profile uncorrelated with p_T

Classification

- Classification goals
 - Keep as many high p_T clusters as possible for physics
 - Decrease data bandwidth
- Region specific implementation
 - 13 locally customizable (reprogrammable weights) neural networks implemented directly in the front-end
 - Reconfigurable weights so we can adapt to changing detector conditions

ROIC implementation

- 4 analog frontends, surrounded by a digital region
- Simulation: 13 x 21; Chip: 16 x 16

20

Design expected to operate at < 300 μW

🚰 Fermilab

- Area < 0.2mm²
- The second chip has been submitted for tape out and we should get it back around May 20th.

Superconducting Nanowire Single Particle Detector

🚰 Fermilab

SNSPD Performance Metrics

For 1 eV energy deposits

- >90% system efficiency
- Low dark count rate 1e-5Hz
- Record time resolution ~3ps

SNSPD Technology for HEP @ Fermilab

 Fermilab has developed and deployed SNSPD sensors for quantum networking and axion experiments (BREAD)

- The unique expertise in SNSPD and test beam operations provide unique platform to push SNSPD R&D for particle detection
- Strong partnership (since 2017) with JPL/MIT/NIST SNSPD group prepares us for fast sensor design-fabricationdeployment cycles

SNSPD for High-Energy Particle Detection

Overarching goal: be at the forefront of R&D for ultra-low threshold space-time (4D) resolved particle detection

Aspirational Goal : <u>sub-eV</u> threshold, <u>sub-micron</u> spatial resolution, <u>picosecond</u> time resolution

Beamline with Tracking Telescope Stations and Up-steam Test Chamber

Fermilab Testbeam Facility (FTBF)

SNSPD Testing Station

Down-stream Test Chamber

SNSPD

Summary

- Many exciting R&D areas that promise to enable and enrich the physics potential of the FCC-ee experiments
 - New, disruptive technologies are emerging
- Developments of new technologies that will enable sensitivity to extremely small energy deposits from BSM physics
- Collaborative efforts are a key for the progress in many challenging directions
 - Integration with the ongoing international efforts within DRD and RDC efforts are crucial!

