Trigger and DAQ at FCC-ee

Second Annual U.S. Future Circular Collider (FCC) Workshop 2024

Zeynep Demiragli (Boston University), Jinlong Zhang (ANL)

Current Detector Concepts: Broad brush strokes

Fundamental Concepts to Address: Do we need a trigger?

- Intelligence on detector: advance data reduction (ML/AI, etc)
- High performance sampling and timing (4D readout, etc)
- Levering emerging technologies (high-speed optical link, etc)

Common R&D Collaborations and Initiatives

TDAQ should be part of the detector design concepts from the start:

- Event rates is significantly lower than a hadron collider...
 - but precision requirements are different and and material budget is tighter.
- If we start now, we can reduce the system complexity of the readout
 - Enables developing common standards using common technological platforms.

Common R&D Collaborations and Initiatives

TDAQ should be part of the detector design concepts from the start:

- Event rates is significantly lower than a hadron collider...
 - but precision requirements are different and and material budget is tighter.
- If we start now, we can reduce the system complexity of the readout
 - Enables developing common standards using common technological platforms.

			SpS freel ager Belle II lager	LCE LSS PPULIDINE DUNE	11.00 K 1.84)	LHec 284	FCC ^{NO} IMenty CL. ⁶⁶ (M.M.	CLC (Tacking) and CLC	FCC the limited with a second	Much Com deter
		DRDT	< 2030		2030-2035	2035- 2040	2040-	2045	> 2045	
	High data rate ASICs and systems	7.1	• • •		*	•	•		• (
lancity	New link technologies (fibre, wireless, wireline)	7.1					•		(
ensity	Power and readout efficiency	7.1			• •				ð • (Ō
itelligence	Front-end programmability, modularity and configurability	7.2					•			
n the	Intelligent power management	7.2			*		Ŏ (Õ (Ō
etector	Advanced data reduction techniques (ML/AI)	7.2								
	High-performance sampling (TDCs, ADCs)	7.3	• •			• •			• •	
D-	High precision timing distribution	7.3								
cnniques	Novel on-chip architectures	7.3					Õ () (õ
	Radiation hardness	7.4								ē
nvironmente	Cryogenic temperatures	7.4		•					ě (
and longevity	Reliability, fault tolerance, detector control	7.4				• •				
	Cooling	7.4			*				ð • (
merging echnologies	Novel microelectronic technologies, devices, materials	7.5								Ō
	Silicon photonics	7.5		•	•	•	Õ (Õ (ō.
	3D-integration and high-density interconnects	7.5			*				ē (õ
	Keeping pace with, adapting and interfacing to COTS	7.5								

A few roadmaps for common R&D:

- The 2021 ECFA Detector R&D
 - DRD7 collaboration on electronics and on-detector processing
- The 2019 DOE Basic Research Needs for HEP Detector R&D
 - The Coordinating Panel for Advanced
 Detectors (CPAD) *RDC5 group* on TDAQ
- US Focused detector R&D needs for the next generation e+e- collider: <u>arxiv:2306.13567</u>

Physics Processes and Backgrounds

At FCC-ee the instantaneous luminosity per interaction point for all running scenarios are:

- Z pole: $230 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} => \text{Most rate demanding scenario}$
- WW: 28, ZH: 8.5, and tt: 1.8

At the Z pole, expected total event rate ~200 kHz, beam background expected to be 10% of the rate.

Physics Processes and Backgrounds

At FCC-ee the instantaneous luminosity per interaction point for all running scenarios are:

- Z pole: $230 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} => \text{Most rate demanding scenario}$
- WW: 28, ZH: 8.5, and tt: 1.8

At the Z pole, expected total event rate ~200 kHz, beam background expected to be 10% of the rate.

Physics process	Rate (kHz)			
Z decays	100			
$\gamma \gamma \rightarrow \text{hadrons}$	30			
Bhabha	50			
Beam background	20			
Total	~ 200			

https://arxiv.org/pdf/2111.04168v1.pdf

Process Rates dominated by two sources:

- Physics events (Z boson)
- Backgrounds:
 - Interaction Region Backgrounds: Beamstrahlung induced bkgs (coherent/incoherent pair creation γγ → e+e- pairs), γγ → hadrons and radiative Bhabha (small)
 - Beam Effects: Synchrotron radiation (dominant for top but can be shielded), beam-gas (small), etc.

Bandwidth calculations

For TDAQ systems, the parameters of interests are:

- Rate of interesting physics events
- Rate of irreducible backgrounds (beam and physics)
- Average event size

Bandwidth = Process rate x Average Event Size

Bandwidth calculations

For TDAQ systems, the parameters of interests are:

- Rate of interesting physics events
- Rate of irreducible backgrounds (beam and physics)
- Average event size
 - Occupancy of the detector
 - Data per unit detector cell (buffer length/depth)

Bandwidth = Process rate x Average Event Size

Bandwidth = Process rate x Occupancy x Buffer size

Bandwidth calculations

For TDAQ systems, the parameters of interests are:

- Rate of interesting physics events
- Rate of irreducible backgrounds (beam and physics)
- Average event size
 - Occupancy of the detector
 - Data per unit detector cell (buffer length/depth)

Bandwidth = Process rate x Average Event Size

Bandwidth = Process rate x Occupancy x Buffer size

Detector input:

- Occupancy \rightarrow depends on the implementation of zero suppression & integration time
- Buffer size \rightarrow data format is subdetector dependent

CLD: Preliminary Rate Estimates

Adaptation from the CLIC detector:

- Silicon vertex detector:
 - \circ 0.53 m² \rightarrow 0.84 G channels
- Silicon central tracker:
 - $\circ ~~200~m^2 \,{\rightarrow}\, 2 \pm 0.75~G~channels$
- High granularity calorimeter
 - ECAL (20cm) 5mm×5mm Si-W (1.9mm W)
 - 40 layers, 4000 m² \rightarrow 160 M ch
 - HCAL (117cm) 30mm×30mm Sci-steel
 - 44 layers, 8000 m² \rightarrow 9.2 M ch
 - Solenoid outside of calorimeter
 - Muon systems (RPC Muon chambers, 30mmx30mm)
 - \circ 3250 m² 3.6 M channels

CLD: Preliminary Rate Estimates

Assuming 100 kHz Z at 50 MHz BX:

- Silicon vertex detector:
 - 150MB/s from physics, 6 GB/s from Bkg (IPC)
- Silicon central tracker:
 - 160MB/s from physics, 10 GB/s from Bkg (IPC)

- High granularity calorimeter
 - ECAL (21 GB/s) + HCAL (1.8 GB/s) based on CEPC studies (similar calorimeter design but different number channels).

IDEA: Preliminary Rate Estimates

- Silicon vertex detector:
 - 5 MAPS layers
 - Inner layers: 0.3% of X_0 / layer
 - Outer layers: 1% of X_0 / layer
- Drift chamber (112 layers)
 - 4m long, r=35–200cm
- Silicon Wrapper strips
- Solenoid inside the calorimeter
- Preshower (µ-Rwell)
- **Dual Readout Calorimeter**
 - 2m deep, # of SiPM = 130 M
- Muon chambers (µ-Rwell)

IDEA: Preliminary Rate Estimates

Rates at Z Pole, arxiv:2111.04168v1, Annecy FCC - Idea

Assuming 100 kHz Z rate, $\gamma\gamma \rightarrow$ hadrons, Bhabha and Noise at 50 MHz BX:

- Vertex detector (ARCADIA Readout):
 - Overall occupancy (assume 10µs integration): 2-3% at the Z pole, with Layer 1 being the largest rate.
 - 2.2 Tbit/sec (NoTrigger)
- Drift Chambers:
 - Unfiltered/suppression:
 - ~360 GB/s of Z + ~80 GB/s other
 - ~50 GB/s noise (electronics)
 - ~300 GB/s IPC
 - Using real-time analysis on the FPGA:
 - ~44 GB/s of Z + ~8 GB/s other
 - Noise ~0 + IPC \rightarrow 2 GB/s

IDEA: Preliminary Rate Estimates

Rates at Z Pole, arxiv:2111.04168v1, Annecy FCC - Idea

- DR Calorimeter (fiber calorimeter):
 - \circ With zero-suppression and 16B readout \rightarrow 10 GB/s physics
 - In this configuration, noise (*dark counts*) are *estimated to be over 1 TB/s*.
 Additional noise suppression would be necessary.
- Alternate with crystals:
 - # Fibers reduced by x2-3 if crystals in front with 1x1 cm² crystal section
 - at 100 kHz trigger rate: <1GB/s with dark count < MIP readout threshold.
- Preshower, muon systems are noise dominated however < 1GB/s

Annecy FCC, Allegro

Allegro: Preliminary Rate Estimates

A "newer" experiment proposal, still developing

- Tracker assume <u>similar structure as IDEA</u>:
 - 5 MAPS layers for vertex detector
 - Drift Chamber (112 layers)
- Highly granular ECAL with a Noble liquid technology, inside super transparent CF cryostat
 - \circ $\,$ LAr or LKr with Pb or W absorbers
 - Multi-layer PCB as read-out
- Solenoid after ECAL (in same cryostat)
- CALICE-like or TileCal-like (baseline) HCAL
- Simple muon tagger

Annecy FCC, Allegro

Allegro: Preliminary Rate Estimates

A "newer" experiment proposal, still developing

- Tracker assume <u>similar structure as IDEA</u>:
 - Estimations based on IDEA results; on detector cluster finding based on amplitude and time of peaks needed.
- Rate studies for ECAL ongoing:
 - Assuming zero suppression above the electronics noise level: 8 GB/s physics
 - Bkg simulation on going
- Similarly for HCAL & Muon system simulation studies are underway
 - Expect manageable rates for physics from HCAL.

Comparing Results & Conclusions

General design principle is to the readout the data with low material and low power budget with nearly ~100% efficiency..

The current detector concepts have various similarities and also differences. Regardless, each subdetector needs to evaluate <u>occupancies and data buffer needs</u>, so that bandwidths can be estimated.

This requires:

- simulations to estimate the machine-induced & physics backgrounds. It is shown that there are large contributions also from beamstrahlung induced bkgs (coherent/incoherent pair creation)
- detailed signal formation studies (times) to understand latencies

Preliminary studies (as shown in the Annecy workshop most recently) show that <u>on-detector processing beyond zero suppression is necessary for data reduction</u>.

Outlook

For TDAQ, the requirements are driven by the Z pole running with physics rates up to 200 kHz.

The big picture question is still to understand if we need a "hardware" trigger

- this then evolves into more questions on buffer size and latency requirements
- whether all or subset of detectors to provide triggers ...

Nevertheless the obvious need/question are:

- On-detector processing beyond zero suppression
- What to record on the tape? (a high level software trigger)

Moving forward, the focus on technology R&Ds:

- High performance sampling & novel on-chip architectures
- Intelligence (AI/ML) on/off detector for: data reduction, power management, autonomous control/calibration
- Emerging technologies → microelectronics, high density data links and COTS (heterogeneous computing)

Back up

Vertex detector: 6 GB/s

Z decays

20 trks/ev × 8 hits/trk × 5 pix/hit = 800 pix/ev
 800 pix/ev ×13 bit/pix / 8 bit/B × 100 kHz = 130 MB/s

γγ → hadrons

- 10 trks/ev × 8 hits/trk × 5 pix/hit = 400 pix/ev 400 pix/ev ×13 bit/pix / 8 bit/B × 30 kHz = 20 MB/s
 IPC background*
- 6 trks/ev/BX × 50 BX × 8 hits/trk × 5 pix/hit = 12000 pix/ev
 12000 pix/ev ×13 bit/pix / 8 bit/B × 100 kHz × 3 (SF) = 6 GB/s

*based on full simulation of CLD. Assume similar rates for IDEA

CEPC CDR: DAQ IOF ECAL

- Maximum event rate: 100 kHz
 - Peak event rate: ~32kHz at Z-pole
 - Safety margin: a factor of ~3
 - $\bullet\,$ 10 μs time window for readout

• ECAL: 2 options in CDR

• Si-W ECAL: $10 \times 10 \text{ mm}^2$ silicon pads

- Sc-W ECAL: 45 × 5 mm² scintillator strips
- Longitudinal depth: 24X0

ECAL options	#Channels Occupancy #bit per [Million] [%] channel		#bit per channel	#readout channels/evt	Data Volume per event	Data rate at 100kHz	
SiW ECAL Barrel	17	0.17	32	28.8 k	117 kByte	11.7 GBytes/s	
SiW ECAL Endcap	7.3	0.31	32	22.4 k	90 kByte	9.0 Gbytes/s	
ScW ECAL Barrel	7.7	0.17	32	13.1 k	53 kByte	5.3 GBytes/s	
ScW ECAL Endcap	3.3	0.31	32	10.2 k	41 kByte	4.1 Gbytes/s	

CEPC CDR: DAQ for HCAL

- Peak event rate: ~32kHz at Z-pole
- Safety margin: a factor of ~3
- 10 μs time window for readout
- HCAL: 2 options in CDR

Scintillator HCAL: 30 × 30 mm² scintillator tiles

HCAL

- RPC HCAL (SDHCAL): 10 × 10 mm² RPC pads
- Longitudinal depth: 40 layers (~4.7 λ)

ECAL options	#Channels [Million]	Occupancy [%]	#bit per channel	#readout channels/evt	Data Volume per event	Data rate at 100kHz
Scintillator HCAL Barrel	3.6	0.02	32	0.72 k	2.9 kByte	0.3 GBytes/s
Scintillator HCAL Endcap	3.1	0.12	32	3.72 k	15 kByte	1.5 Gbytes/s
RPC HCAL Barrel	32	0.004	8	1.28 k	1.28 kByte	0.13 GBytes/s
RPC HCAL Endcap	32	0.01	8	3.2 k	3.2 kByte	0.32 Gbytes/s

Principle of the Dual Readout calorimeter

- Event by event correction for EM-had fluctuations
 - Principle demonstrated by DREAM/RD-52
- > EM and hadron calorimeter in a single package
 - All electronics in back easy to cool and access
- Electrons/photons are independently sampled by the two kind of fibers (Scintillating and Cherenkov).

$\begin{array}{c|c} 0.4 & 1.5 & 1.0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0$

Fiber pattern RD52

Alternating scintillating and clear fibers in metal matrix

https://indico.cern.ch/event/1077114/attachm ents/2318206/3994245/DeFilippis_IDEA.pdf