Overview of Calo Technologies for FCCee

Nicolas Morange, IJCLab

Second US FCC Workshop, 26/03/2024

Laboratoire de Physique des 2 Infinis

Calorimeters at FCC-ee: what for ?

FCC-ee: a specific set of requirements

- Energy resolution: "only" for photons and neutral hadrons
 - But: ideally photons as low as 200 300 MeV
- Dynamic range: 200 MeV 180 GeV
 - vs LHC: 6 TeV jets !
- Granularity: PID, disentangle showers for PFlow
 - But: how granular exactly ?
- Hermeticity, uniformity, calibrability, stability
 - Low systematics for precision measurements
 - Complex engineering questions
- No need to be particularly fast
 - But: can precise timing help in reconstructing showers ?

A quest for ultimate jet energy resolution

PFlow PFlow PFlow

- Basic principles well known
- What granularity do we really need at FCC-ee (vs ILC optimisation: 1TeV c.o.m)?
- New ideas for new calos (crystals DR study)

Second US FCC Workshop, 26/03/2024

FCC-ee unique challenges

- Some channels require very high EM resolution
 - More examples ?
- τ physics: reconstructing the decays
 - Means π^0 reconstruction and ID
 - Count close-by π^0
 - Granularity
- BSM, e.g ALP searches
 - photon resolution, photon pointing

Table: Each row shows the fraction of e.g. $\tau \to \pi^{\pm} \nu$ decays classified as each of the considered channels

0.0002

0.0002

0.0022

0.0910

FCC-ee calorimeters landscape: DRD6

Detector R&D (DRD) collaborations implement the ECFA Detector R&D Roadmap

- DRD6 on Calorimetry with 4 work packages and several transversal activities (TB, Materials, SW, ...)
 - <u>First Collaboration meeting:</u> <u>April 9-11 at CERN</u>
 - Organised by CERN, but truly international collaboration
- Not only targeted at FCC-ee
 - Also: LHCb SPACAL, MuC, future hadron collider, CEPC...

• Mission:

- Bring a diverse set of calorimeter technologies to a level of maturity such that they can be considered for a technology selection of future experiments
- Maturity demonstrated with **full-scale prototypes**

WP1: Sandwich calos with fully embedded electronics

To some extent, continuity of CALICE projects. Hermeticity, compactness.

WP1: Projects

Task/Subtask	Sensitive Material/ Absorber	DRDTs	Target Application	Current Status	
Task 1.1: Highly	pixelised electromagnetic sec	tion			
Subtask 1.1.1: SiW-ECAL	Silicon/ Tungsten	6.2	e^+e^- collider central detector	Prototype for finalising R&D for LC, Specification for CC and of timing for PFA needed	
Subtask 1.1.2: Highly compact calo	Solid state (Si or GaAs)/ Tungsten	6.2	e^+e^- collider forward part	Prototypes with non-optimised sensors, Sensor optimisation and data transfer studies ongoing	
Subtask 1.1.3: DECAL	CMOS MAPS/ Tungsten	6.2, 6.3	e^+e^- collider central detector. Future hadron collider	Prototypes with non-optimised sensors, Sensor optimisation ongoing	
Subtask 1.1.4: Sc-Ecal	Scintillating plastic strips/ Tungsten	6.2	e^+e^- collider central detector	Prototype for finalising R&D for LC, Specification for CC and of timing for PFA needed	
Task 1.2: Hadron	ic section with optical tiles				
Subtask 1.2.1: AHCAL	Scintillating plastic tiles/ Steel	6.2	e^+e^- collider central detector	Prototype for finalising R&D for LC, Specification for CC and of timing for PFA needed	
Subtask 1.2.2: ScintGlassHCAL	Heavy glass tiles/ Steel	6.2	e^+e^- collider central detector	Material studies and specifications for prototypes	
Task 1.3: Hadron	ic section with gaseous reado	out			
Subtask 1.3.1: T-SDHCAL	Resistive Plate Chambers/ Steel	6.2	e^+e^- collider central detector	Prototype for finalising R&D for LC, Specification for CC and of timing for PFA needed	
Subtask 1.3.2: MPGD-HCAL	Multipattern Gas Detectors/ Steel	6.2, 6.3	$\mu^+\mu^-$ collider central detector	Small prototype for proof-of-principle, Lateral and longitudinal extension envisaged	
Subtask 1.3.3: ADRIANO3	Resistive Plate Chambers +Scintillating plastic tiles/ Heavy Glass	6.1, 6.2, 6.3	e^+e^- collider central detector BSM searches in MeV-GeV range	RPC, Scintillating Tiles advanced status, R&D on heavy glass needed	

SiW Ecal

Baseline Ecal in CLD

- 40 layers, 1.9 mm tungsten absorber, 22 Χ₀
- 0.5 mm thick silicon sensors with 5×5 mm² granularity
- O(10⁸) cells
 - Super high granularity for PFlow reconstruction
 - > Tight integration: compact and hermetic
- EM resolution ~17%/√E
- Challenges:

N. Morange (IJCLab)

- Adaptation to FCC-ee (cooling, power)
- Granularity re-optimisation ?
- Study addition of timing
- System aspects: design engineering module

DECAL – Digital ECAL based on MAPS

- A MAPS-based digital Silicon-Tungsten ECAL, building on current DECAL and EPICAL projects
- Fully digital (no energy measurement / cell)

 30×30 µm² Si pixels
- Main R&D topics
 - Establish requirements of a sensor dedicated for digital calorimetry
 - Design of next-generation sensor with calorimeter-specific optimisation and evaluation of sensor design
 - Aim for small-scale digital ECAL prototype in 2026

SiPM-on-Tile AHCAL

Baseline HCal in CLD. Same technology as used in CMS HGCal.

SiPM-on-tile / steel HCAL

- Builds on CALICE AHCAL prototype
- Wrapped scintillator tiles directly read by SiPM

- Adaptation of detector concept to circular colliders with continuous readout
 - Data rates, cooling
- Corresponding hardware developments: ASICs, readout, thermal and mechanical designs, scintillator geometry

T-SDHCAL

- A RPC-based semi-digital HCAL with timing capability
 - Builds on CALICE SDHCAL technological prototype
 - Use of more eco-friendly gases

• Main R&D directions

- Simulation studies extending to time information
- Study and development of cooling and cassette concepts
- Fast timing electronics, DAQ system
- Aim to conclude initial R&D to propose a concept by 2026

WP2: Liquified noble gases calos

All noble liquid calo community united behind the ALLEGRO Ecal project

- High granularity (O(10⁶) cells) noble liquid (LAr/LKr) Ecal using straight readout electrodes
 - Good compromise for granularity, resolution (5-8%/ \sqrt{E}), stability, uniformity

- Optimise design for performance based on simulations
- R&D on electrodes and absorbers
- Mechanical design
- Cold and warm frontend electronics
- Aim: testbeam module in 2028

Scintillation / Cerenkov light used in many calo concepts

Project	Calorimeter type	Scintillator/WLS	Photodetector	DRDTs	Target		
Task 3.1: Homogeneous and quasi-homogeneous EM calorimeters							
HGCCAL	EM / Homogeneous	BGO, LYSO	SiPMs	6.1, 6.2	e^+e^-		
MAXICC	EM / Homogeneous	PWO, BGO, BSO	\mathbf{SiPMs}	6.1, 6.2	e^+e^-		
Crilin	EM / Quasi-Homog.	PbF_2 , PWO-UF	\mathbf{SiPMs}	6.2, 6.3	$\mu^+\mu^-$		
Task 3.2: Innovative Sampling EM calorimeters							
GRAiNITA	EM / Sampling	$ZnWO_4$, BGO	SiPMs	6.1, 6.2	e^+e^-		
SpaCal	EM / Sampling	GAGG, organic	MCP-PMTs,SiPMs	6.1, 6.3	e^+e^-/hh		
RADiCAL	EM / Sampling	LYSO, LuAG	SiPMs	6.1, 6.2, 6.3	e^+e^-/hh		
Task 3.3: Hadronic sampling calorimeters							
DRCal	EM+HAD / Sampling	PMMA, plastic	SiPMs, MCP	6.2	e^+e^-		
TileCal	HAD / Sampling	PEN, PET	${ m SiPMs}$	6.2, 6.3	e^+e^-/hh		
Task 3.4: Materials							
ScintCal	-	The second second second	1.7	6.1, 6.2, 6.3	$e^+e^-/\mu^+\mu^-/hh$		
CryoDBD Cal	-	TeO, ZnSe, LiMoO	n.a.	-	DBD experiments		
1050		NaMoO, ZnMoO					

In addition: **R&D on crystals** and other scintillating materials

MAXICC / CalVision

Ecal for IDEA detector concept

- Homogeneous EM calorimeter based on segmented crystals with dual-readout
 - High density scintillating crystals with good cherenkov yield
 - Dedicated optical filters and SiPMs to readout S and C from same active element
 - Promise $3\%/\sqrt{E}$ + DR capability
 - Synergies within Calvision, IDEA and CERN Crystal Clear collaborations

- Identification of optimal crystal, optical filters and SiPM candidates
- Proof-of-concept with lab measurements and prototypes
- EM scale prototype for beam test

Dual Readout calorimeter

Main / Hcal calorimeter for IDEA detector concept

- Longitudinally unsegmented dual-readout sampling calorimeter
 - Scintillation and Cherenkov fibres inside an absorber groove
 - Reaches $30\%/\sqrt{E}$ for single hadrons \Rightarrow ultimate resolution for jets
 - O(130 M) fibers for O(15 M) channels

- Develop scalable readout electronics
- Optimize metal matrix mechanics for large production
- Develop mechanical model of full system with services
- Testbeam with Hidra2 prototype

$$C = E[f_{em} + (h/e)_{C}(1 - f_{em})]$$

$$E = \frac{S - \chi C}{1 - \chi}$$
 with: $\chi = \frac{1 - (h/e)_S}{1 - (h/e)_C}$

TileCal

Used in ALLEGRO concept

- High-granularity version of ATLAS TileCal hadronic calorimeter
 - 5mm steel absorber plates alternating with 3mm Scint.: 8 - 9.5λ
 - SiPM readout through WLS
 - Cost-effective solution

- Exploration of scintillators
- Optimisation of WLS and SiPMs for readout efficiency
- Build testbeam module

GRAINITA

A novel type of calorimeter ~ next-gen shashlik

- Use grains of inorganic scintillating crystal readout by wavelength shifting fibers
 - Light spatially confined by refraction/reflections

- Excellent expected EM resolution: $2-3\%/\sqrt{E}$
 - Using \dot{BGO} or $ZnWO_4$ crystals
 - First small 16-channel prototype used with cosmics

- R&D on crystal grains
- Aim for larger prototype to validate on testbeam

Conclusions

• Huge diversity of calorimeter concepts for FCC-ee

• Apologies to those I did not have time to feature !

Some building on proven technologies

• Pushing those technologies to their limits

• Some coming to fruition after years of R&D

• Challenge for calorimeters tailored for ILC: adaptation to FCC-ee conditions

Some brand new ideas

• In all cases:

- Long road ahead to get to large scale prototypes
- System-level concerns and engineering challenges are numerous to achieve highest performance at FCC-ee