Sensitivity to BSM fermions from Higgs precision studies

A. Freitas (U. Pittsburgh)

A. Freitas and Q. Song, JHEP 01 (2024) 137 [arXiv:2308.13030]

Symmetry magazine (Sandbox studio, Ana Kova)

Introduction

- Precision Higgs studies are sensitive to BSM physics
- Expected precision for $ee \rightarrow HZ$:

ILC	1.2%	[1903.01629]
CEPC	0.5%	[1811.10545]
FCC-ee	0.4%	[EPJ ST 228, 261

- Sensitivity to BSM mass scales:

→ within reach of LHC!

Introduction

- Existing studies of Higgs Factory—LHC complementarity:
 - Singlet scalar model [Ellis et al., 1910.11775]
 - Two-Higgs doublet models [Chen, Han, Su, Su, Wu, 1808.02037] [+ Li, 1912.01431]
 - Composite Higgs models [Thamm, Torre, Wulzer, 1502.01701]
 - SUSY [Bahl, Bechtle, Heinemeyer, Liebler, Stefaniak, Weiglein, 2005.14536]
 - Fermionic DM models [Bi, Xiang, Yin, Yu, 1707.03094] [+ Wang, 1711.05622]
- This work: broad class of fermionic dark sector models
 - Lightest fermion can (but need not) be DM
 - Larger parameter region and wider set of (HL-)LHC constraints than prev. work

Observables and constraints

• Cross section for $ee \rightarrow HZ$

- Oblique S/T parameters from LEP
- Recast (HL-)LHC chargino/neutralino searches

$$\begin{split} q\bar{q}' &\to W^{*\pm} \to \chi^{\pm} (\to \chi_l^0 W^{*\pm}) + \chi^0 (\to \chi_l^0 + Z^*/H), \\ q\bar{q}' \to Z^* \to \chi^0 (\to \chi_l^0 + Z^*/H) + \chi^0 (\to \chi_l^0 + Z^*/H) \\ q\bar{q}' \to Z^* \to \chi^{\pm} (\to \chi_l^0 W^{\pm *}) + \chi^{\mp} (\to \chi_l^0 W^{\mp *}), \end{split}$$

For stable (unstable) lightest χ : LHC searches assuming R-parity conservation (violation)

► $R_{\gamma} = BR[H \rightarrow \gamma \gamma]$ (where applicable)

Models

 Two fermion multiplets for Yukawa coupling with Higgs

Dirac singlet-doublet model (DSDM):

Dirac singlet χ_S + Dirac doublet $\chi_D = (\chi_D^+, \chi_D^0)$

$$\mathcal{L}_{\text{DSDM}} \supset -m_D \overline{\chi}_D \chi_D - m_S \overline{\chi}_S \chi_S - \left(y \,\overline{\chi}_D \chi_S H + \text{h.c} \right)$$

 χ_S and χ_D^0 mix \Rightarrow mass eigenstates $\chi_{l,h}^0$

• Majorana singlet-doublet model (MSDM): Majorana singlet χ_S

$$\mathcal{L}_{\text{MSDM}} \supset -m_D \overline{\chi}_D \chi_D - \frac{1}{2} m_S \overline{\chi}_S \chi_S - \left(y \, \overline{\chi}_D \chi_S H + \text{h.c} \right).$$

 χ_S and χ_D^0 mix \Rightarrow Majorana mass eigenstates $\chi_{l,m,h}^0$:

Models

- ▶ Dirac doublet-triplet models:
 a) triplet hypercharge -1 (DDTM1)
 mass eigenstates x⁰_{l,h}; x[±]_{L,h}; x[±]_T
 - b) triplet hypercharge 0 (DDTM0) mass eigenstates $\chi^0_{l,h}$; $\chi^{\pm}_{l,m,h}$

$$\chi_D = \begin{pmatrix} \chi_D^0 \\ \chi_D^- \end{pmatrix}, \qquad \chi_T = \begin{pmatrix} \chi_T^-/\sqrt{2} & \chi_T^0 \\ \chi_T^{--} & -\chi_T^-/\sqrt{2} \end{pmatrix}$$
$$\chi_T = \begin{pmatrix} \chi_D^0/\sqrt{2} & \chi_T^+ \\ \chi_T^- & \chi_T^+/\sqrt{2} \end{pmatrix}$$

$$\chi_D = \begin{pmatrix} \chi_D^+ \\ \chi_D^0 \end{pmatrix}, \qquad \chi_T = \begin{pmatrix} \chi_T^0 / \sqrt{2} & \chi_T^+ \\ \chi_T'^- & -\chi_T^0 / \sqrt{2} \end{pmatrix}$$

 Majorana doublet-triplet model (MDTM):
 Similar to DDTM0, but χ_T is a Majorana field mass eigenstates χ[±]_{l,h}; χ⁰_{l,m,h} (Majorana)

Most sensitive LHC studies

Stable lightest fermion:

Large mass difference (Bino+Wino-like):

Current: ATLAS [2108.07586] (139 fb⁻¹, fully hadronic W/Z decays)

HL-LHC: ATLAS [ATL-PHYS-PUB-2018-048] (2 b-jets + 1 lepton)

Small mass difference (Higgsino-like):

Diffractive chargino prod. with soft-lepton final states $pp \rightarrow p(\gamma\gamma \rightarrow \chi^+\chi^-)p$ [Zhou, Liu, 2208.10406]

Most sensitive LHC studies

Unstable lightest fermion:

- \rightarrow consider two scenarios
- Leptonic χ_l^0 decays

SUSY search with LLE R-parity violation [ATLAS, 2103.11684] (139 fb⁻¹)

• χ_l^0 decays with photons

Search for gauge-mediated SUSY [ATLAS, 1802.03158] (36 fb⁻¹)

Calculational methods

Amplitude generation with
 FeynArts 3.11 [Hahn., hep-ph/0012260]
 (in-house BSM model files)

• Computation of "observables" (σ_{HZ} , S/T, R_{γ}) with

FeynCalc 9 [Shtabovenko, Mertig, Orellana. 2001.04407] and in-house Mathematica code

 Recast of (HL-)LHC bounds by inter-/extrapolation of published exclusion contours or cross-section limits, compared to model cross-sections
 [limited accuracy, but sufficient for sufficient for present purposes]

Results: stable Dirac singlet-doublet model

$\delta = \left \frac{\sigma}{\sigma} \right $	$\sigma_{ m ZH}^{ m FDS}$ -	- $\sigma_{ m ZH}^{ m SM}$
	$\sigma_{\rm Z}^{\rm S}$	M H

ILC	1.2%
CEPC	0.5%
FCC-ee	0.4%

- strong bounds from oblique parameters
- significant deviations in ee→HZ unlikely

Results: stable Dirac singlet-doublet model

s	$\sigma_{\rm ZH}^{\rm FDS}$ –	$\sigma_{ m ZH}^{ m SM}$
0 =	$\sigma_{\rm ZI}^{\rm SI}$	MH

ILC	1.2%
CEPC	0.5%
FCC-ee	0.4%

- strong bounds from oblique parameters
- significant deviations in ee→HZ unlikely

Results: stable Majorana singlet-doublet model

ILC	1.2%
CEPC	0.5%
FCC-ee	0.4%

- no relevant bounds from oblique parameters
- significant deviations in ee→HZ beyond (HL-)LHC constraints

Results: decaying Majorana singlet-doublet model

ILC	1.2%
CEPC	0.5%
FCC-ee	0.4%

- stronger (HL-)LHC bounds for leptonic decays
- photonic decay study has small statistics (36 fb⁻¹)

Results: stable Dirac doublet-triplet model with Y=-1

Plot for $m_D > m_T \implies m_h^{0, \pm, \pm \pm} \gg m_l^{0, \pm}$

$$\delta = \left| \frac{\sigma_{\rm ZH}^{\rm FDS} - \sigma_{\rm ZH}^{\rm SM}}{\sigma_{\rm ZH}^{\rm SM}} \right|$$

(similar Higgsino with decoupl. wino)

ILC	1.2%
CEPC	0.5%
FCC-ee	0.4%

- significant bounds from oblique parameters
- direct (HL-)LHC searches for soft final states

Results: decaying Dirac doublet-triplet model (Y=-1)

Plot for $m_D > m_T \implies m_h^{0, \pm, \pm \pm} \gg m_l^{0, \pm}$ (similar Higgsino with decoupl. wino)

s	$\sigma_{\rm ZH}^{\rm FDS}$ –	$\sigma_{ m ZH}^{ m SM}$
0 =	$\sigma_{\rm ZH}^{\rm SN}$	M H

ILC	1.2%
CEPC	0.5%
FCC-ee	0.4%

 direct (HL-)LHC searches much stronger, using harder leptons from m_l⁰ decay

Conclusions

- Minimal dark-sector fermion models modify Higgs physics at NLO
 - Consider SU(2) singlets/doublet/triplets and Dirac/Majorana fields
- Complementary probes at LHC (direct) and Higgs factories (indirect, 1-loop)
 - %-level corrections for σ_{HZ} in large parameter regions; O(TeV) masses
 - Strong constraints from oblique parameters for most Dirac models
- New parameter space probed by Higgs factories (beyond current and projected HL-LHC bounds)
 - in particular for Majorana models
 - also in regions of small Δm
- Oblique parameter measurements at FCC-ee could provide stronger bounds for some models, help with model discrimination (tbd)

Backup

Results: stable Dirac doublet-triplet model with Y=0

Plot for $m_T > m_D \implies m_h^{0, \pm} \gg m_l^{0, \pm}$ (similar to wino-Higgsino system)

ILC	1.2%
CEPC	0.5%
FCC-ee	0.4%

- strong bounds from oblique parameters
- significant deviations in ee→HZ unlikely

Results: stable Majorana doublet-triplet model

Plot for $m_T > m_D \implies m_h^{0, \pm} \gg m_l^{0, \pm}$ (similar to wino-Higgsino system)

ILC	1.2%
CEPC	0.5%
FCC-ee	0.4%

- most important LHC constraints from R_γ
- significant deviations in ee→HZ strongly bounded