

Iza Veliscek

Contributions from: Haider Abidi, Viviana Cavaliere, Jan Eysermans, George Iakovidis, Loukas Gouskos, Andrea Sciandra, Michele Selvaggi

25th March 2024, 2nd US FCC Workshop

Introduction

- ZH leading Higgs production mode
 - + All hadronic decay has the largest branching fraction
 - Jet combinatorics, flavour identification
- Abundance of Higgs produced @ \sqrt{s} = 240 GeV
 - Focus on IDEA Detector

Samples Considered

IDEA Detector

• Delphes fast sim

• Winter2023 Samples

- /eos/experiment/fcc/ee/jet_flavour_taggi ng/winter2023/ wc_pt_7classes_12_04_2023
- Jet Clustering
 - N = 4 Durham k_{T} exclusive algorithm
- ParticleNet jet tagger
 - fccee_flavtagging_edm4hep_wc
- Build on ZH(full hadronic) analysis presented in Annecy by George [slides]

Background:

- WW
- ZZ
- Zqq
- Z(bb/cc/ss/qq/)H(tautau)
- Z(bb/cc/ss/qq/)H(WW)
- Z(bb/cc/ss/qq/)H(ZZ)
- Z(bb/cc/ss/qq/)H(Z/γ*)
- nunuH(jj)
- Missing Z(bb/cc/ss/qq/)H(qq)

<u>Signals:</u>

- Z(bb/cc/ss/qq/)H(bb)
- Z(bb/cc/ss/qq/)H(cc)
- Z(bb/cc/ss/qq/)H(ss)
- Z(bb/cc/ss/qq/)H(gg)

Analysis setup

Preselection

Exactly 4 jet!

Lepton cuts

- <= 2 muons and electrons
- Leading muon and electron pT < 20GeV

Visible Energy

- Visible m > 150 GeV
- Visible E > 150 GeV
- 0.15 <Visible θ < 3.0

d_{ij} Cuts

- 15000 < d₁₂ < 58000
- 400 < d₂₃ < 18000
- 100 < d₃₄ < 6000

COLLIDER

Jet energy correction

Precision with e⁺e⁻ colliders (4)

- □ Why are e⁺e⁻ colliders the tool of choice for precision anyway ? (cont'd)
 - + Electrons are leptons, i.e., elementary particles: no underlying event
 - Corollary: Final state has known energy and momentum: (\sqrt{s} , o, o, o)
 - Example: an $e^+e^- \rightarrow W^+W^- \rightarrow qqqq$ candidate
 - Four jets in the event and nothing else
 - Total energy and momentum are conserved
 - $\Rightarrow E_1 + E_2 + E_3 + E_4 = \sqrt{s}$
 - $P_{1}^{x,y,z} + p_{2}^{x,y,z} + p_{3}^{x,y,z} + p_{4}^{x,y,z} = 0$
 - Jet directions (β_i = p_i/E_i) are very well measured

1	1	1	1	$\begin{bmatrix} E_1 \end{bmatrix}$		\sqrt{s}
β_1^x	β_2^x	β_3^x	β_4^x	E_2		0
β_1^y	β_2^y	β_3^y	β_4^y	E_3	-	0
β_1^z	β_2^z	β_3^z	β_4^z	E_4		0

- Jet energies (or di-jet masses: m_w) determined analytically by inverting the matrix
 - No systematic uncertainty related to jet energy calibration

A lot of Z are available anyway to calibrate and align everything

Patrick Janot

Physics at Future Colliders 28-29 July 2016

7

If any jet in event E<0 OR E>240
 GeV [only a few percent of events]
 TOSS EVENT

Iza Veliscek

Jet "tagging"

ParticleNet jet tagger

- Scores provided for the "flavours":
 B, C, S, g, T, U, D
 q: U,D
- Scores ~ probability jet is of flavour X
- NOT traditional flavour tagging
 - Maximum flavour score ~ flavor of jet
 - Sums of same flavour scores for jet pairs ~ flavour of jet pair

Each jet has a maximum tagger score from a different flavour

TOSS EVENT

<u>CASE 1:</u> All jets have the maximum score from the same flavour

Finding the H&Z candidates

Consider all possible jet pairs

- $\chi_{\rm H} = (m_{\rm ij} m_{\rm H,true})^2$
- $\chi_{Z} = (m_{lk} m_{Z, true})^{2}$
- $\chi_{comb} = \chi_{H} + \chi_{Z}$

The jet paring that gives the minimum χ_{comb} is chosen!

CASE 2: Two jet pairs with same maximum score from the same flavour, but different flavour of the pairs

Finding the H&Z candidates

- Jet paired, if they have the same flavour maximum score
- Z candidate: Pair with minimum

 $\chi_{Z} = (m_{lk} - m_{Z, true})^{2}$

CASE 3: Two jets with maximum score from the same flavour form a pair

Recover second pair:

- Consider all sums of tagger scores
 - $Max(\sum_{ij}Bscore, \sum_{ij}Cscore, \sum_{ij}Sscore, ...)$
 - Determines the flavour of the pair

Finding the H&Z candidates

• Same flavour pairs (Case 1)

 $Min(\chi_{comb}=\chi_{H}+\chi_{Z})$

• Different flavour pairs (Case 2)

• $Min(\chi_{Z} = (m_{lk} - m_{Z, true})^{2}$

<u>CASE 4:</u> Three jets with maximum score from the same flavour

Recover first pair: [check code]

- Maximum tagger score sum
 - $Max(\sum_{ii}Bscore, \sum_{ik}Bscore, \sum_{ik}Bscore, ...)$
 - Determines the flavour of the 1st pair

Recover second pair:

- Consider all sums of tagger scores
 - $Max(\sum_{ij}Bscore, \sum_{ij}Cscore, \sum_{ij}Sscore, ...)$
 - Determines the flavour of the pair

Finding the H&Z candidates

• Same as for Case 3

WW & ZZ rejection

$$\sqrt{(m_{z_{jj}} - m_W)^2 + (m_{H_{jj}} - m_W)^2} > 10$$

$$\sqrt{(m_{z_{jj}} - m_Z)^2 + (m_{H_{jj}} - m_Z)^2} > 10$$

Mass window

$$50 < m_{Z_{jj}} < 125 \,\mathrm{GeV}, m_{H_{jj}} > 90 \,\mathrm{GeV}$$

Reject events identified/contain as:

- H->tt
- H->qq, q=u,d
- Z->tt
- Z->gg

- Categorize by $H->j_1j_2$ decay
 - Categorize by $Z \rightarrow j_3 j_4$ decay
 - Additionally by H flavour score
 - Purity category :
 - High (>1.8 (1.4 for Hss))
 - Mid(1.1 (0.8) < score < 1.6
 (1.4) (Hss cut in ())
 - Low (<1.1 (0.8 for Hss))
- 36 Categorised in total!
- + 1 GeV binning in m_{ij,H}
- + 5 GeV binning in m_{jj,Z}

Likelihood scan

- Asimov (expected) data = SM = background estimation + SM signal
 - How compatible are different μ_{xx} to the asimov data set, i.e. how sensitive are we?
 - Compare the **test statistic** (λ) of the different μ_{xx} on this dataset.

UTURE

OLLIDER

Yet another correction to m_{ii},

- Besides the energy correction to the jets based on COM
- After all selection:
 - mH_jj_corr = mH_jj + mZ_jj mZ_{truth}
- As before fit mH_jj_corr against mZ_jj

^{68%} CL precision Variation	μ_{Hbb}	μ_{Hcc}
BASE	±0.3	±3.9
Base (fit Mh_jj_corr_Mz_jj	±0.3	±3.9

Andrean re-trained tagger for different detectors [see Andrea' presentation]:

- Baseline: IDEA baseline
- idealVXDCalo:
 - Best material budget, hit resolution and calorimeter granularity
- lighterVXD_100pc:
 - $\sim \sim \text{No material interaction}$

(X₀>>1m)

- heavierVXD_100pc:
 - Super small radiation length

(X₀<<1m)

• CLD

```
Iza VeliscekO Fast sim of the CLD o1_v01
```


Approximating the impact on tagging

Propagating the impact of retraining the tagger:

- Account only for impact on **b-,c- and s-score**
- Histo per jet flavour (4x) per detector variation [Thanks Andrea!]
 - Sample from histogram to update the b- c- and s-score score
 - Depends on the jet truth label!

Drawbacks of the strategy

- <u>Jet truth labelling</u> not optimal
 - 88% accuracy in Z(qq)H(bb) samples [Thanks Jan E.!]
 - Does not tag gluon jets
- Ignoring some correlations
 - Correlation of the b-,c-, s- score to u/d, gluon score neglected

* Older tagger training, tau's not included

Impact on the analysis - Higgs B score

Truth H->bb jets flavour: The hit in performance of the tagger has the largest effect on the Higgs C-score. Smaller c-jet rejection leads to a larger Higgs C score.

Impact on the analysis - Migration between fit categorise

Likelihood scans - μ_{Hcc}

Largest change in expected precision on μ_{Hcc} observed when the tagger is re-trained with the CLD simulation.

Results

- IDEA baseline very close to ideal vertex & calo detector
- Robust analysis strategy
 - Small change in event selection
 - Main effect is migrates events between categories, dues to changes in performance
- No change in μ_{Haa} as expected
 - G-score not varied nor truth gluon jet score corrected
- Largest impact on μ_{Hcc} w/ CLD trained tagger
- Caveats remainder!
 - Only approximate propagation of tagging effects
 - Ignored correlations of between b/c/s with g and light scores

^{68%} CL precision Variation	μ_{Hbb}	μ_{Hcc}
BASE	±0.3%	±3.9%
idealVXDCalo	±0.3%	+3.9% -3.8%
lighterVXD_100pc	±0.3%	±3.9%
heavierVXD_100pc	±0.4%	+4.6% -4.5%
CLD	±0.4%	±4.3%

Conclusion

- Correction of the reconstructed Higgs mass does not significantly improve the expected precision on μ_{Hxx}
 - mH_jj_corr = mH_jj + mZ_jj mZ_{truth}
- First look at the impact of flavour tagging given different detector layouts
 - Partricle net retrained for various detector layouts
 - Changes in tagger performance propagated to the ZH->jjjj analysis
 - Sever approximation taken to have a quick estimation of the impact
 - Determine how big of a change in the tagging performance is worth rerunning the whole analysis chain
 - The analysis roubouts
 - Very small impact on the expected μ_{Hxx} precision measurement

Next Steps

- Consider different jet clustering strategies
 - Will have a summer student working on it for ~ 8 weeks
- Optimize analysis strategy
 - Still some space to push for more precise μ_{Hxx} measurements
- Future parametrize impact of various detector layout
 - Evaluate re-trained tagger without approximations
 - Jet mass resolution
- Combine with Z(vv)H(jj) and Z(jj)H(jj)

BACKUP

24

Tagger performance

Iza Veliscek

Impact on the analysis - Higgs C score

Truth H->cc jets flavour: The better rejection of the Nominal tagger is reflected in a higher fraction of truth H->cc events, with a very high Higgs C score. [see next slide]

Migration of ZZ events

