Top Quark Couplings Prospects at Future Lepton Colliders

FCC US 2024

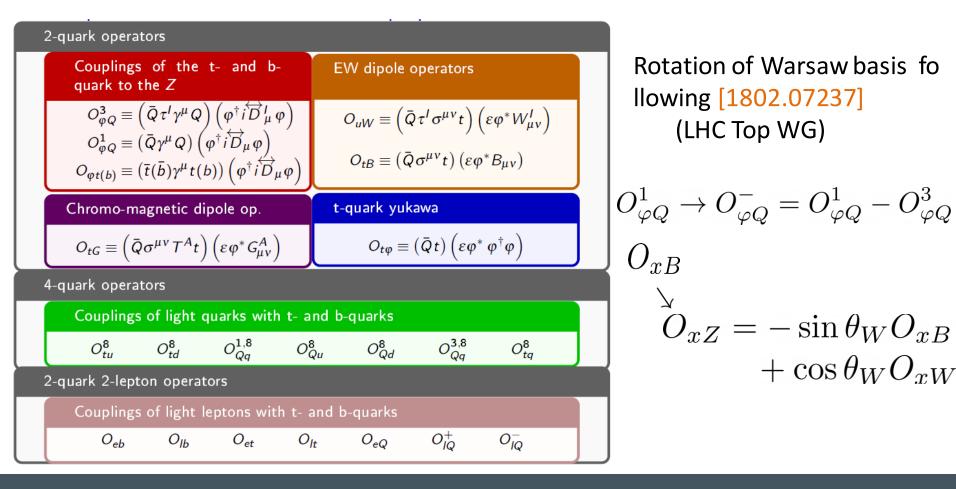
March 26, 2024 Fernando Cornet-Gomez

Based on:

"... standing on the shoulders of giants" Bernard of Chartres

- Based on: [2205.02140] and [2206.08326]
- also: [1907.10619] and [2107.13917]
- and near future paper (stay tuned)
- By members of the EF04 team:
 - Jorge de Blas, Yong Du, Christophe Grojean, Jiayin Gu, Victor
 Miralles, Michael E. Peskin, Junping Tian, Marcel Vos, Eleni Vryonidou
- and also additional members of the EF03 team:
 - Gauthier Durieux, Abel Gutiérrez Camacho, Luca Mantani, Marcos Miralles López, María Moreno Llácer, René Poncelet

Top Quark Couplings Prospects at Future Lepton Colliders

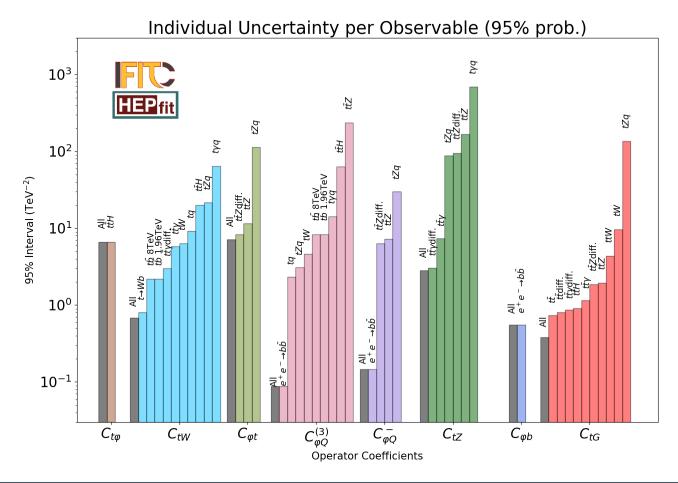

Introduction

- Goal: constrain the top-quark Wilson coefficients of the SMEFT
- Numerical fits performed using HEPfit [1910.14012]
- The following topics will be discussed:
 - Relevant observables constraining each Wilson Coefficient
 - Estimations on the improvement of the measurements for the HL-LHC
 - Estimation of the relevant observables for this fit in future lepton colliders
 - Prospects for our limits in the HL-LHC and future e + e colliders

Top Quark Couplings Prospects at Future Lepton Colliders

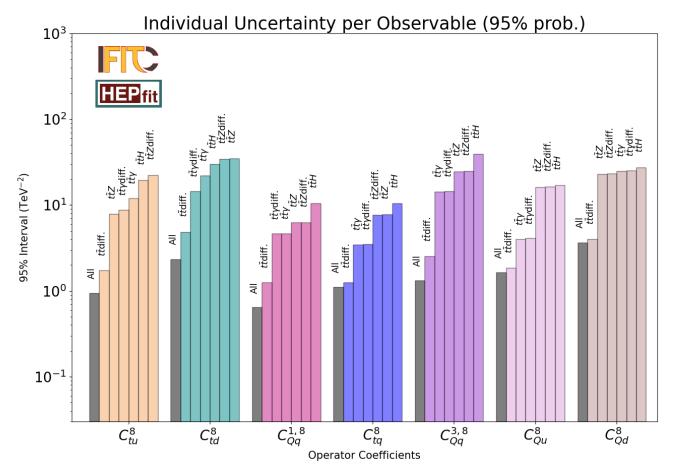
Relevant operators

Top Quark Couplings Prospects at Future Lepton Colliders


Relevant observables (current colliders)

Process	Observable	\sqrt{s}	$\int \mathscr{L}$	Experiment	
$pp \rightarrow t\bar{t}$	$d\sigma/dm_{t\bar{t}}$ (15+3 bins)	13 TeV	140 fb ⁻¹	CMS	
$pp ightarrow tar{t}$	$dA_C/dm_{t\bar{t}}$ (4+2 bins)	13 TeV	140 fb ⁻¹	ATLAS	
$pp \rightarrow t\bar{t}Z$	$d\sigma/dp_T^Z$ (7 bins)	13 TeV	$140~{ m fb}^{-1}$	ATLAS	
$ ho pp ightarrow tar{t}\gamma$	$d\sigma/dp_T^{\gamma'}$ (11 bins)	13 TeV	$140 { m ~fb^{-1}}$	ATLAS	
$pp \rightarrow t\bar{t}H + tHq$	σ + diff NEV	vi 13 TeV	$140 { m ~fb^{-1}}$	ATLAS	
pp ightarrow tZq	σ	13 TeV	77.4 fb ⁻¹	CMS	
$pp ightarrow t\gamma q$	σ	13 TeV	36 fb ⁻¹	CMS	
$pp ightarrow t ar{t} W$	σ	13 TeV	36 fb ⁻¹	CMS	
$pp ightarrow tar{b}$ (s-ch)	σ	8 TeV	20 fb ⁻¹	LHC	
pp ightarrow tW	σ	8 TeV	20 fb ⁻¹	LHC	
pp ightarrow tq (t-ch)	σ	8 TeV	20 fb ⁻¹	LHC	
$t \rightarrow Wb$	F ₀ , F _L	8 TeV	20 fb ⁻¹	LHC	
$par{p} ightarrow tar{b}$ (s-ch)	σ	1.96 TeV	9.7 fb ⁻¹	Tevatron	
$e^-e^+ ightarrow bar{b}$	R_b , A^{bb}_{FBLR}	\sim 91 GeV	202.1 pb ⁻¹	LEP/SLD	

Top Quark Couplings Prospects at Future Lepton Colliders


Individual 2 quarks-WC constraints

Top Quark Couplings Prospects at Future Lepton Colliders

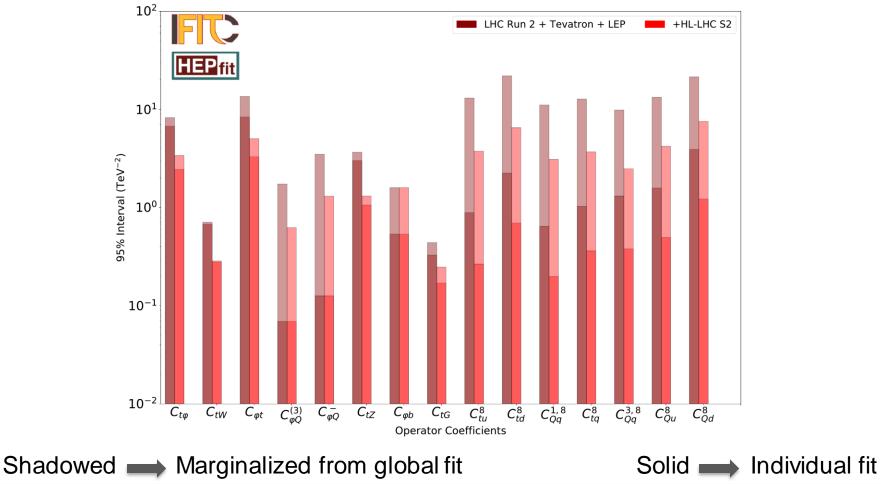
Individual 4 quarks-WC constraints

Top Quark Couplings Prospects at Future Lepton Colliders

Prospects for Measurements at HL-LHC

Uncertainty	Reduced by a factor of
Theoretical	1/2
Modelling	1/2
Systematic	$1/\sqrt{\mathcal{L}}$
Statistical	$1/\sqrt{\mathcal{L}}$

Top Quark Couplings Prospects at Future Lepton Colliders


Inclusive Crossections & Helicities

			LHC Unc. HL-LHC Unc.					с.				
Process	Measured (fb) SM	SM (fb)	theo.	exp.			theo.	exp.				
	·			stat.	sys.	mod.	tot.		stat.	sys.	mod.	tot.
$pp \rightarrow t\bar{t}H + tHq$	640	664.3	41.7	90	40	70.7	121.2	20.9	19.4	8.6	35.4	41.3
$pp ightarrow t \overline{t} Z$	990	810.9	85.8	51.5	48.9	67.3	97.8	42.9	11.1	10.6	33.6	37.0
$pp ightarrow t ar{t} \gamma$	39.6	38.5	1.76	0.8	1.25	2.16	2.62	0.88	0.17	0.27	1.08	1.13
pp ightarrow tZq	111	102	3.5	13.0	6.1	6.2	15.7	1.75	2.09	0.98	3.1	3.87
$pp \rightarrow t\gamma q$	115.7	81	4	17.1	21.1	21.1	34.4	2	1.9	2.3	10.6	11.0
$pp \rightarrow t\bar{t}W + EW$	770	647.5	76.1	120	59.6	73.0	152.6	38.1	13.1	6.5	36.5	39.4
$pp \rightarrow t \bar{b} \text{ (s-ch)}$	4900	5610	220	784	936	790	1454	110	35	42	395	399
$pp \rightarrow tW$	23100	22370	1570	1086	2000	2773	3587	785	49	89	1386	1390
$pp \rightarrow tq (t-ch)$	87700	84200	250	1140	3128	4766	5810	125	51	140	2383	2390
F ₀	0.693	0.687	0.005	0.009	0.006	0.009	0.014	0.003	0.0004	0.0003	0.004	0.004
F _L	0.315	0.311	0.005	0.006	0.003	0.008	0.011	0.003	0.0003	0.0002	0.004	0.004

Top Quark Couplings Prospects at Future Lepton Colliders

Expected HL-LHC contraints improvement

Top Quark Couplings Prospects at Future Lepton Colliders

Bottom-pair production at e+e- colliders

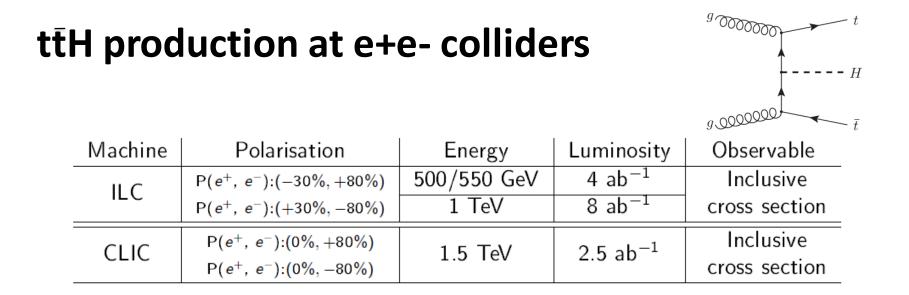
Machine	Polarisation	Energy	Luminosity	Observable	
ILC	$D(a^{+}, a^{-}) = (-20\% + 80\%)$	250 GeV	2 ab ⁻¹	$\sigma_{\rm v}$	
	$P(e^+, e^-):(-30\%, +80\%)$ $P(e^+, e^-):(+30\%, -80\%)$	500 GeV	4 ab ⁻¹	$\sigma_{bar{b}} \ A^{bar{b}}_{FB}$	
		1 TeV	8 ab ⁻¹	A _{FB}	
CLIC	$P(e^+, e^-):(0\%, +80\%)$ $P(e^+, e^-):(0\%, -80\%)$	380 GeV	2 ab^{-1}	σ	
		1.5 TeV	2.5 ab ⁻¹	$\sigma_{bar{b}} \ A^{bar{b}}_{FB}$	
	P(e ⁺ , e ⁻):(0%, -80%)	3 TeV	5 ab ⁻¹	AFB	
CEPC/FCC- <i>ee</i>		Z-pole	$57.5/150~{ m ab}^{-1}$	σ-	
	Unpolarised	240 GeV	20/5 ab ⁻¹	$\sigma_{bar{b}} \ A^{bar{b}}_{FB}$	
		360/365 GeV	$1/1.5 \; { m ab}^{-1}$	AFB	

- Cross-section and Assymmetry FB constrain:
 - The WC related with EW precision observables: $C^+_{arphi Q} = C^1_{arphi Q} + C^3_{arphi Q}$, $C_{arphi b}$
 - Relevant for 2-quark 2-lepton WC: C_{lQ}^+ , C_{lb} , C_{eb}
 - The higher-energy measurement are more relevant for the 2-quark 2-lepton operators

Top Quark Couplings Prospects at Future Lepton Colliders

Top-pair production at e+e- colliders

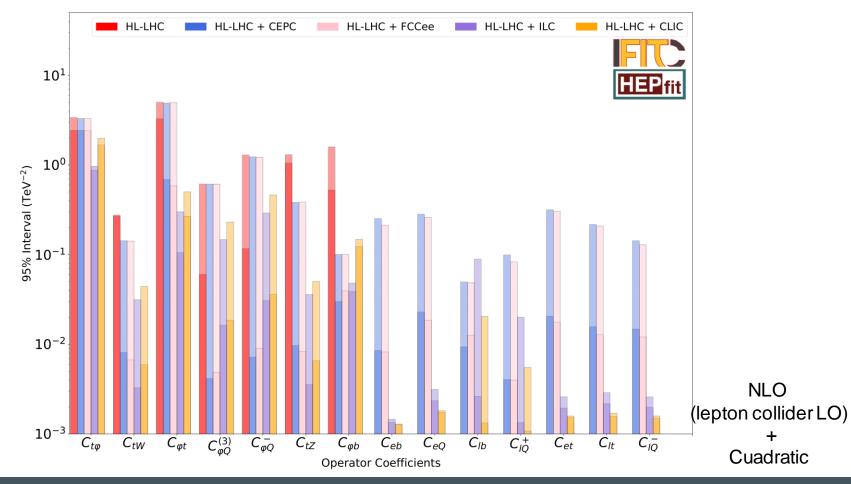
Machine	Polarisation	Energy	Luminosity	Observable	
ILC	P(e ⁺ , e ⁻):(-30%, +80%)	500 GeV	4 ab ⁻¹	Optimal	
	$P(e^+, e^-)$:(+30%, -80%)	1 TeV	8 ab ⁻¹	Observables	
CLIC	P(e ⁺ , e ⁻):(0%, +80%) P(e ⁺ , e ⁻):(0%, -80%)	380 GeV	2 ab ⁻¹	Optimal	
		1.5 TeV	2.5 ab ⁻¹	Observables	
		3 TeV	5 ab ⁻¹	Observables	
CEPC/FCC-ee	e Unpolarised	350 GeV	$0.2 \ { m ab}^{-1}$	Optimal	
		365 GeV	$1/1.5~{ m ab}^{-1}$	Observables	


• Optimal observables maximally exploit the information in the fully diferential $e^+e^- \rightarrow t\bar{t} \rightarrow bW^+\bar{b}W^-$ dist. [1807.02121], constraining:

– The 2-fermion coefficients: $C^-_{arphi Q}\,,\,C_{arphi t}\,,\,C_{tW}\,,\,C_{tZ}$

- The 2-quark 2-lepton: $C^-_{lQ}\,,\,C_{lt}\,,\,C_{et}\,,\,C_{eQ}$
- Two different energies above the top-pair threshold are needed to constrain all the 2- and 4fermion operators (constant/linear vs quadratically with energy)

Top Quark Couplings Prospects at Future Lepton Colliders



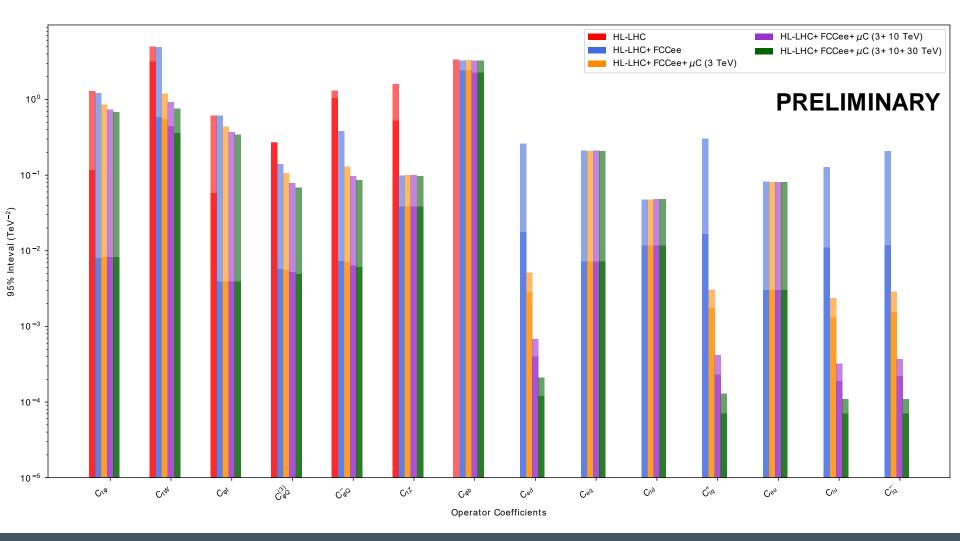
- Key observable for the top quark Yukawa coupling
- The production cross section is 3 times bigger at ILC 550 than at ILC500
 - Improved statistical sensitivity by more than a 50%
- ILC550, CLIC1500 and HL-LHC have similar sensitivities
- ILC1000 improves the expected HL-LHC sensitivity by a factor of two

Top Quark Couplings Prospects at Future Lepton Colliders

Comparison of Future Colliders

Top Quark Couplings Prospects at Future Lepton Colliders

Top at $\mu+\mu$ - collider


	Machine	Polarisation	Energy	Luminosity	Observables
Muon Collider		3TeV	$1 a b^{-1}$	Optimal Observables	
	Unpolarised	10TeV	$10 ab^{-1}$	$^{-1}$ Optimal Observables $^{-1}$ (tt s-channel) tt (VBF)	
		30TeV	$90 ab^{-1}$		

- Optimal observables extended for Muon Collider [1807.02121], constraining:
 - The 2-fermion coefficients: $C^-_{arphi Q}\,,\,C_{arphi t}\,,\,C_{tW}\,,\,C_{tZ}$
 - The 2-quark 2-lepton: $C^-_{lQ}\,,\,C_{lt}\,,\,C_{et}\,,\,C_{eQ}$
 - Energies highly above the top-pair threshold are the key o constrain all the 2- and 4-fermion operators (constant/linear vs quadratically with energy)

Top Quark Couplings Prospects at Future Lepton Colliders

LHC-HL + FCC-ee + µ-Collider

COLLEGE OF ARTS AND SCIENCES CASE WESTERN RESERVE UNIVERSITY Top Quark Couplings Prospects at Future Lepton Colliders

Outlook (and current work)

- ATLAS is making an effort to measure $pp \rightarrow t\bar{t}\ell\bar{\ell}$
 - We expect to restrict them at HL-LHC to compare with lepton colliders
- We are expanding the parametrization to NLO
- We will include the cuadratic terms in the parametrizations
- Include more Observables for Muon Collider

Top Quark Couplings Prospects at Future Lepton Colliders

Summary

- HL-LHC expected to improve the bounds by roughly a factor 3
- An e+e- collider can signicantly improve bounds on bottom-quark and on top-quark operators (operated above the tt threshold)
 - FCCee and CECP (at and slightly above the tt threshold) can improve bottom- and topoperators by factor 5 (2 for 2-fermion operators)
 - Power to constrain 4-fermion operators limited by energy reach
 - ILC and CLIC operated at two center-of-mass energies above the tt threshold can provide very tight bounds on all operators, with bounds on 4F taking advantage of energygrowing sensitivity
 - Muon Collider would play a key role puting bounds on 4F operators.

Top Quark Couplings Prospects at Future Lepton Colliders

Thank you

Top Quark Couplings Prospects at Future Lepton Colliders