Tau leptons at FCC-ee: Decay identification and polarization measurements

Tim Neumann and Isabella Vesely, The PPC March 25, 2024

Illii

Outline

- 1. FCC-ee overview
- 2. Why tau leptons?
- 3. Decay channel ID (BDTs)
- 4. Polarization measurements
- 5. Conclusions

FCC-ee: Proposed high-energy lepton collider

e⁺/e⁻ collider, 100 km circumference Electroweak physics at Z pole

- New measurements
 - find SM inconsistencies
- Project finer uncertainties
 - SM parameters

 Ideally: Systematic < statistical uncertainties (acceptance, background)

FCC-ee Luminosity

- Heavy bosons (Z, W, H) ✓ (1 LEP/2 min)
- FCC-ee vs LEP: *L* x 10⁵ (Z pole)
- Statistical uncertainty up to 300x smaller than LEP*
- Ambitious $Z \rightarrow \tau + \tau$ polarization study achieve precision target*:

 $< 5 \cdot 10^{-6}$ (30x better vs present, $1.8 \cdot 10^{-4}$)

Tau polarization

- 1. FCC-ee overview
- 2. Why tau leptons?
- 3. Decay channel ID (BDTs)
- 4. Polarization measurements
- 5. Conclusions

What is tau polarization?

- Describes orientation of spin angular momentum w.r.t. momentum direction
- Helicity: projection of spin onto momentum

- Tau lepton: spin $\pm \frac{1}{2}$
 - RH: dir(spin) = dir(motion)

Figure 1: The four possible helicity states of incoming quarks and outgoing τ leptons. Thin arrows depict the direction of movement and the thick arrows show the spin of the particles. The angle θ_{τ} is the scattering angle of the τ^{-} lepton with respect to the quark momentum in the rest frame of the Z boson.

Obtaining the weak mixing angle (SM param)

$$P_{\tau} \approx -2\frac{g_V^{\tau}}{g_A^{\tau}} = -2(1 - 4\sin^2(\theta_w))$$

coupling ratio

 $x 8 \rightarrow$ measurement error reduction

Weak mixing angle:

- describes weak interaction strength, w.r.t. electromagnetic interactions
- vector and Axial **coupling constants** (describes lepton Z0 boson, same/opposite chirality)

- mass ratio, Z and W bosons:
$$\cos(heta_w) = rac{m_w}{m_z}$$

How do we measure polarization? $P_{\tau} \approx -2 \frac{g_V^{\tau}}{g_A^{\tau}} = -2(1 - 4\sin^2(\theta_w))$

$$\frac{1}{N}\frac{dN}{dx} \approx 1 + P_{\tau}(2x - 1)$$

energy distribution

normalized energy/momentum

* diff E distributions for diff decay channels

Tau tagging \checkmark

- Unstable particle \rightarrow will decay \checkmark
- Heavier, sizeable decay length:
 - $c\tau = 87 \ \mu m$
 - vs μ
 - \rightarrow measure final state E

Tau tagging 🗸

- Unstable particle \rightarrow will decay
- Heavier, sizeable decay length:
 - $c\tau = 87 \ \mu m$
- Hadronic tau decay criteria
 - 1 charged particle (49.5%)
 - 3 charged particles (15.2%)
 - **5 charged** particles (0.1%)
 - Otherwise, 3-body decay w/neutrinos or irrelevant

$ au o e \nu_e \ u_{ au},$	17.8 %
$ au o \mu u_\mu \ u_ au$	17.4~%
$ au o \pi^{\pm} u_{ au}$	11.1 %
$ au o \pi^0 \pi^\pm u_ au$	25.4 %
$ au o \pi^0 \pi^0 \pi^\pm u_ au$	9.19 %
$ au o \pi^0 \pi^0 \pi^0 \pi^\pm u_ au$	1.08 %
$ au o \pi^{\pm} \pi^{\pm} \pi^{\pm} u_{ au}$	8.98 %
$ au o \pi^0 \pi^{\pm} \pi^{\pm} \pi^{\pm} u_{ au}$	4.30 %
$ au o \pi^0 \pi^0 \pi^{\pm} \pi^{\pm} \pi^{\pm} u_{ au}$	0.50~%
$ au o \pi^0 \pi^0 \pi^0 \pi^{\pm} \pi^{\pm} \pi^{\pm} u_{ au}$	0.11 %
$ au o K^{\pm} X \nu_{ au}$	3.74 %
$ au ightarrow (\pi^0) \pi^{\pm} \pi^{\pm} \pi^{\pm} \pi^{\pm} \pi^{\pm} u_{ au}$	0.10 %
others	0.03~%

Table 1 Most relevant Tdecay branching ratios

Thrust Axis Determination

Thrust Axis Validation

Tau polarization

Decay channel identification

applying Boosted Decision Trees (BDTs)

- 1. FCC-ee overview
- 2. Why tau leptons?
- 3. Decay channel ID (BDTs)
- 4. Polarization measurements
- 5. Conclusions

Decay Selection Process

- First use a naive selection process using particle counts and detector information
- Then use boosted decision tree for optimized classification

Monte Carlo Decay Selection Process

Reconstructed Particle Decay Selection Process

Decay channel ID

π^0 mass reconstruction

- Cuts at 0.1 and 0.2 GeV for π^0 identification
- Exhaust all combinations of γ 's energy deposits \rightarrow if within mass range, label as π^0 (accounts for very collinear γ 's)
- Potential for training BDT explicitly for π^0 identification

π^0 mass reconstruction

BDT Classification Input Variables

- Invariant Mass
- π^0 count
- Free γ count
- Charged particle momentum
- Charged particle ϕ
- Charged particle η
- # of muons
- # of electrons

Confusion Matrix

BDT Classification

Naive Classification

Decay channel ID

19

Performance Statistics

BDT Performance

Decay Mode	Precision	Recall
1	0.99	0.96
2	0.97	0.93
3	0.81	0.96
4	0.95	0.95
5	0.92	0.95
6	0.88	0.85
7	0.91	0.97
8	0.83	0.91
9	0.67	0.50
10	0.84	0.67
11	0.17	0.08
12	0.85	0.94
13	0.95	0.79

Naive Performance

Decay Mode	Precision	Recall
1	0.98	0.92
2	0.90	0.85
3	0.61	0.88
4	0.77	0.89
5	0.33	0.22
6	0.29	0.85
7	0.66	0.74
8	0.82	0.77
9	0.45	0.48
10	0.83	0.57
11	0.00	0.00
12	0.67	0.50
13	0.51	0.43

Decay channel ID

Given a decay channel:

Measure tau polarization

- 1. FCC-ee overview
- 2. Why tau leptons?
- 3. Decay channel ID (BDTs)
- 4. Polarization measurements
- 5. Conclusions

$au ightarrow \pi^{\pm} u_{ au}$ (3, simplest channel)

$ au o e \nu_e \ u_{ au},$	17.8 %
$ au o \mu u_\mu \ u_ au$	17.4~%
$ au o \pi^{\pm} \nu_{ au}$	11.1 %
$ au o \pi^0 \pi^\pm u_ au$	25.4 %
$ au o \pi^0 \pi^0 \pi^\pm u_ au$	9.19~%
$ au ightarrow \pi^0 \pi^0 \pi^0 \pi^\pm u_ au$	1.08~%
$ au ightarrow \pi^{\pm}\pi^{\pm}\pi^{\pm} u_{ au}$	8.98 %
$ au ightarrow \pi^0 \pi^\pm \pi^\pm \pi^\pm u_ au$	4.30~%
$ au o \pi^0 \pi^0 \pi^\pm \pi^\pm \pi^\pm u_ au$	0.50~%
$ au o \pi^0 \pi^0 \pi^0 \pi^\pm \pi^\pm \pi^\pm u_ au$	0.11~%
$ au o K^{\pm} X u_{ au}$	3.74~%
$ au ightarrow (\pi^0) \pi^{\pm} \pi^{\pm} \pi^{\pm} \pi^{\pm} \pi^{\pm} u_{ au}$	0.10~%
others	0.03~%

Table 1 Most relevant τ decay branching ratios

Reconstructed particle data (upper hem)

Reconstructed particle data (upper hem)

Illii

l'Iliī

Decay Energy/Momentum Distribution \rightarrow find P_{τ}

Decay Energy/Momentum Distribution \rightarrow find P_{τ}

$$\frac{1}{N}\frac{dN}{dx} \approx 1 + P_{\tau}(2x - 1)$$

±0.00838 using cov

But, not our final value...

50000

40000

30000

- 20000

10000

0.75 1.00

40

data

(repeat for each slice)

- fit

0.8

1.0

Polarization measurements

The errors will be revisited.

Next Steps

- 1. FCC-ee overview
- 2. Why tau leptons?
- 3. Decay channel ID (BDTs)
- 4. Polarization measurements
- 5. Conclusions

Next Steps

- Refine BDT performance
 - optimize for 1, 3, leptonic decay channels for complete polarization measurement
 - train BDT on samples w/FS
- Polarization measurement
 - in-depth error verification: only negative tau, Whizard/KKMC generator
 - acquire polarization factors (A_e, A_tau), thanks to angle dependence on P_t asym
- Integrate the two components \rightarrow complete, single pipeline

Thank you!

Backup Slides

