

Higgs physics and detector requirements

Loukas Gouskos (Brown University)

US FCC Workshop, March 2024

Credits: A. Del Vecchio (Roma), J. Eysermans (MIT), D. Garcia (CERN), G. Iakovidis (BNL), G. Marchiori (CNRS), M. Selvaggi (CERN), Iza Veliscek (BNL)

BSM O(1TeV): Impact on H-couplings

Model	$b\overline{b}$	сī	gg	WW	au au	ZZ	$\gamma\gamma$	$\mu\mu$
MSSM [40]	+4.8	-0.8	- 0.8	-0.2	+0.4	-0.5	+0.1	+0.3
Type II 2HD [42]	+10.1	-0.2	-0.2	0.0	+9.8	0.0	+0.1	+9.8
Type X 2HD [42]	-0.2	-0.2	-0.2	0.0	+7.8	0.0	0.0	+7.8
Type Y 2HD [42]	+10.1	-0.2	-0.2	0.0	-0.2	0.0	0.1	-0.2
Composite Higgs [44]	-6.4	-6.4	-6.4	-2.1	-6.4	-2.1	-2.1	-6.4
Little Higgs w. T-parity [45]	0.0	0.0	-6.1	-2.5	0.0	-2.5	-1.5	0.0
Little Higgs w. T-parity [46]	-7.8	-4.6	-3.5	-1.5	-7.8	-1.5	-1.0	-7.8
Higgs-Radion [47]	-1.5	- 1.5	+10.	-1.5	-1.5	-1.5	-1.0	-1.5
Higgs Singlet [48]	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5

1708.08912

$$rac{v^2}{\Lambda^2} \sim rac{6\%}{\Lambda^2({
m TeV})}$$

e.g. ∧=1 (5)TeV→~5 (0.1)%

BSM O(1TeV): Impact on H-couplings

Model	$b\overline{b}$	СĒ	gg	WW	au au	ZZ	$\gamma\gamma$	$\mu\mu$
MSSM [40]	+4.8	-0.8	- 0.8	-0.2	+0.4	-0.5	+0.1	+0.3
Type II 2HD [42]	+10.1	-0.2	-0.2	0.0	+9.8	0.0	+0.1	+9.8
Type X 2HD [42]	-0.2	-0.2	-0.2	0.0	+7.8	0.0	0.0	+7.8
Type Y 2HD [42]	+10.1	-0.2	-0.2	0.0	-0.2	0.0	0.1	-0.2
Composite Higgs [44]	-6.4	-6.4	-6.4	-2.1	-6.4	-2.1	-2.1	-6.4
Little Higgs w. T-parity [45]	0.0	0.0	-6.1	-2.5	0.0	-2.5	-1.5	0.0
Little Higgs w. T-parity [46]	-7.8	-4.6	-3.5	-1.5	-7.8	-1.5	-1.0	-7.8
Higgs-Radion [47]	-1.5	- 1.5	+10.	-1.5	-1.5	-1.5	-1.0	-1.5
Higgs Singlet [48]	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5

1708.08912

• HL-LHC:

- ◆ Direct searches: O(5) TeV
- ◆ <u>H-couplings:</u> few%, selfcoupling~50%

■ Future e⁺e⁻ collider:

 Measure H-couplings at O(0.1)% level

$$rac{v^2}{\Lambda^2} \sim rac{6\%}{\Lambda^2({
m TeV})}$$

e.g. ∧=1 (5)TeV→~5 (0.1)%

BSM O(1TeV): Impact on H-couplings

1708.08912

e.g. ∧=1 (5)TeV→~5 (0.1)%

Higgs production at FCC-ee

Focus at ZH production@240 GeV : 2M Higgs [4IP] →Effort on exploring CM~360 GeV just started

General strategy

Z boson reconstruction:

- explore several decay modes
- recoil mass

General strategy

Z boson reconstruction:

- explore several decay modes
- recoil mass

Higgs boson reconstruction:
 as many as possible decay modes

BR(H→hadrons) ~ 80% BR(Z→hadrons) ~ 70% Optimal reconstruction and ID ("tagging") of hadronic final states essential

- Jet representation: Particle cloud
 - i.e. unordered set of particles
- Network architecture: Graph Neural Networks
 - Particle cloud represented as a graph
 - particles: vertices of graph; interactions b/w particles: edges
- Hierarchical learning approach: local \rightarrow global structures

Jet tagging: Performance

H-Couplings to "visible" particles

Analysis channels

- \bullet Z(→LL)H: clean but smaller signal acceptance
- $Z(\rightarrow vv)H$: good compromise b/ signal acceptance and purity
- ◆Z(→hadrons)H: Largest signal acceptance, but.. jets
 - details in Iza's <u>talk</u> later today

Study all possible Higgs decay modes

- Currently: bb, cc, ss, gg, ττ
 - work on going: uu, dd, + off diagonal terms

$\mathbb{R} Z \rightarrow e^+ e^- / \mu^+ \mu^- H channel$

Baseline: N_L=2, N_j=2 m_{LL} (m_{jj}) consistent w/ m_Z (m_H)

Main [non-Higgs] BKGs: ZZ Key: disentangle Higgs decay modes

Loukas Gouskos

2nd US FCC Workshop (2024)

- NN-based evt-level discrim.
 Inputs:
 - ParticleNet-ee scores / jet
 - Evt-level info

Multiclass output

11

$\mathbb{R} Z(\rightarrow e^+e^-/\mu^+\mu^-)H$ channel (II)

Fit m_{rec} simultaneously in all categories

Z(→vv)H channel

More signal, but larger and more complex BKGs

Ge)

20

vents /

Event categorization

- Sum ParticleNet scores of 2 jets
 - e.g. scores: b₁b₂, c₁c₂, s₁s₂, ...
- Largest ∑: Characterize event
 - Subcategories based on S/B

SIG-vs-BKG discrimination

- Different SIG and BKGs shapes in $m_{rec} \mbox{ \& } m_{jj}$
- Bump hunt in 2D
 - simultaneous fit in all categories

2nd US FCC Workshop (2024)

More signal, but larger and more complex BKGs

Event categorization

- Sum ParticleNet scores of 2 jets
 - e.g. scores: b_1b_2 , c_1c_2 , s_1s_2 , ...
- Largest ∑: Characterize event
 - Subcategories based on S/B

Results @5 ab⁻¹

Systematics:

- 5 (0.1)% BKG (SIG)
 - uncorrelated b/w processes BKG: constrained to O(1)%
- Limited MC statistics

Z(→vv)H(→qq)	bb	CC	SS	ag
δμ/μ (%)	0.4	2.6	137	1.1

2x better compared to the 2L channel Also: All-had channel [I. Veliscek talk]

[Very] Preliminary combination (5ab⁻¹)

Final state	Z(II)H(jj) [%]	Z(vv)H(jj) [%]	Z(jj)H(jj) [%]	Comb. [%]
$H \rightarrow bb$	0.81	0.36	0.3	0.22
$H \rightarrow cc$	4.93	2.6	3.5	1.92
$H \rightarrow gg$	2.73	1.1	2.4	0.94
$H \rightarrow ss$	410	137	436	124

[Very] Preliminary combination (5ab⁻¹)

Final state	Z(II)H(jj) [%]	Z(vv)H(jj) [%]	Z(jj)H(jj) [%]	Comb. [%]
$H \rightarrow bb$	0.81	0.36	0.3	0.22
$H \rightarrow cc$	4.93	2.6	3.5	1.92
$H \rightarrow gg$	2.73	1.1	2.4	0.94
$H \rightarrow ss$	410	137	436	124

Forces 3rd-Gen 2nd-Gen

Maybe @(HL-)LHC Guaranteed @e+e-Extremely tempting @FCC-ee Will be established

Vill be established @(HL-)LHC Potential to complete 2nd-Gen Yukawa couplings

2nd US FCC Workshop (2024)

How to get there?

- What's the most <u>optimal</u> way?
 - optimal: e.g., performance, cost, risk, ...

Impact of detector configurations

dN/dx brings most of the gain additional gain w/ TOF (30ps) →TOF (3ps): marginal improvement

More results: A. Sciandra's <u>talk</u>

Additional PIX layer:

 \rightarrow 2x improved BKG rej. in c-tag

 \rightarrow Marginal/no improvement in b-tag

EPJ C 82 646 (2022)

Impact of detector performance

- Neutral Hadron energy resolution
 relevant for all H decays modes
- Impact parameter resolution (d0, dz)
 - relevant for $H \rightarrow bb$, $H \rightarrow cc$
- dN/dX resolution:
 - relevant for H→ss
- Timing resolution (nominal = 30 ps)
 relevant for H→ss

NB: Impact pessimistic

 \rightarrow no retraining of jet identification algorithm performed

Impact of detector performance

 Need to carefully access impact of detector proposals to the Higgs physics program in general

Loukas Gouskos

Analysis front: Systematics

Results @5 ab⁻¹

- Systematics:
- 5 (0.1)% BKG (SIG)
 - uncorrelated b/w processes BKG: constrained to O(1)%
- Limited MC statistics

Need excellent control of systematic [EXP+TH] uncertainties

Z(→vv)H(→qq)	bb	CC	SS	gg
δμ/μ (%)	0.4	2.6	137	1.1

Jet tagging: robustness

- ParticleNet-ee: trained with Pythia8 samples
 - tested on Pythia 8 [solid lines]
 - tested on WZ-Pythia 6 [dashed lines]

Improving robustness

- Current development relies solely on MC
 - Full control of class definition, lot's of [MC] data [~2M jets flavor]
 - but: MC != Data; potentially lead to large uncertainties
 - $_{\odot}$ NB: it's also not Full SIM ..

Improving robustness: The Z-pole

Another route: collision data

[Obvious] advantage: much smaller syst unc.

How: Tag-and-probe @ Z pole

- First: Tag one of the two jets with high purity
 - e.g. by using a pretrained MC-based algo
- Then: create a **training** sample using the **2nd jet (probe)**.

FCC-ee @Zpole

Z→hadrons	~70%	0.7x10 ⁶ M			
→ uu/cc	~12%/flavor	8.4x10 ⁴ M/ flavor			
→ dd/ss/bb	~15%/flavor	1.1x10 ⁵ M/ flavor			

Improving robustness

Take into account tagging performance [& mistag rates]

Best case: b-t	agging
----------------	--------

"Worst" case: s-tagging

WP	Eff (b)	Mistag (g)	Mistag (ud)	Mistag (c)	WP	Eff (s)	Mistag (g)	Mistag (ud)	Mistag (c)	Mistag (b)
Loose	90%	2%	0.1%	2%	Loose	90%	20%	40%	10%	1%
Medium	80%	0.7%	<0.1%	0.3%	Medium	80%	9%	20%	6%	0.4%

Back-of-the-envelope: Training sample @ Zpole
 bottom jets: ~1x10⁵ M, strange jets: ~8.8x10⁴ M

• all other jet flavors in between

Much larger training sample than what used for the MC-only development

Gluon tagging using data?

Challenging... topic of discussion and brainstorming
 For instance:

- FCC-ee [full program] is a powerful machine for Higgs physics [and not only]
 - Potential to reach O(0.1)% precision in H-coupling measurements
- Far from "over-subscribed"; steep learning curve ③
 - Physics object reconstruction
 - Performance: incl. secondary vertices
 - Robustness: architecture design, data-driven @ Zpole, gluontagging, ..
 - Detector design/performance
 - Fast and reliable workflow → test different design configurations

 hand-in-hand with the detector design teams

Loukas Gouskos

US FCC Workshop (2024)

10-1

1σ

200

100

 \mathscr{L}_{int} (ab^{-1})

20 30

3 4 5 6 7

10

2