Prospects for Higgs to invisible at the FCC-ee

D. Boye, S. Snyder, K. Assamagan, A. Sciandra.

Second annual US Future Circular Collider (FCC) Workshop (MIT)

March 26, 2024

D. Boye, S. Snyder, K. Assamagan, A. Sciandra. Second ann

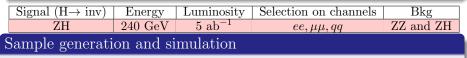
Analysis overview

- Estimate sensitivity for $H \rightarrow invisible at \sqrt{(s)} = 240$ GeV using a combination of full and fast simulation.
- Compare lepton reconstruction between CLD full simulation and Delphes simulations of both CLD and IDEA.

Signal $(H \rightarrow inv)$	Energy	Luminosity	Selection on channels	Bkg
ZH	$240 {\rm GeV}$	5 ab^{-1}	$ee, \mu\mu, qq$	ZZ and ZH

Analysis overview

- Estimate sensitivity for $H \rightarrow invisible at \sqrt{(s)} = 240$ GeV using a combination of full and fast simulation.
- Compare lepton reconstruction between CLD full simulation and Delphes simulations of both CLD and IDEA.


Signal $(H \rightarrow inv)$	Energy	Luminosity	Selection on channels	Bkg
ZH	$240 \mathrm{GeV}$	5 ab^{-1}	$ee, \mu\mu, qq$	ZZ and ZH

Sample generation and simulation

- Used fast simulation from the winter2023 production.
- WHIZARD and Pythia 8 were used for generation, and simulation used Delphes with the IDEA parameters.
- Small samples with full CLD simulation were generated privately, using WHIZARD for both ZH and ZZ samples.
- Those WHIZARD ZH signal samples were also processed with Delphes with both IDEA and CLD parameters for comparisons.

Analysis overview

- Estimate sensitivity for $H \rightarrow invisible at \sqrt{(s)} = 240$ GeV using a combination of full and fast simulation.
- Compare lepton reconstruction between CLD full simulation and Delphes simulations of both CLD and IDEA.

- Used fast simulation from the winter2023 production.
- WHIZARD and Pythia 8 were used for generation, and simulation used Delphes with the IDEA parameters.
- Small samples with full CLD simulation were generated privately, using WHIZARD for both ZH and ZZ samples.
- Those WHIZARD ZH signal samples were also processed with Delphes with both IDEA and CLD parameters for comparisons.
- Higgs-strahlung or $e^+e^- \rightarrow ZH$ Feyman diagram.

2/20

Analysis selection

- \bullet Leptons $p>10~{\rm GeV}$ and isolation requirements applied.
- MET is defined (for both leptonic had hadronic cases) as the total p_T of visible particles.

Analysis selection

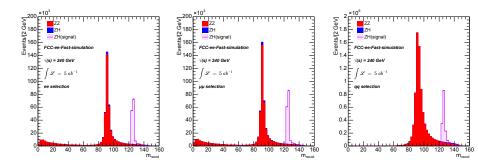
- Leptons p > 10 GeV and isolation requirements applied.
- MET is defined (for both leptonic had hadronic cases) as the total p_T of visible particles.

Electron (muon) channel

- Exactly two same-flavor, opposite sign $e(\mu)$.
- Define Z candidate from the two leptons, and require:
 - $|m_Z 91.0| < 4$ GeV.
- require MET > 10 GeV.

Analysis selection

- Leptons p > 10 GeV and isolation requirements applied.
- MET is defined (for both leptonic had hadronic cases) as the total p_T of visible particles.


Electron (muon) channel

- Exactly two same-flavor, opposite sign $e(\mu)$.
- Define Z candidate from the two leptons, and require:
 - $|m_Z 91.0| < 4$ GeV.
- require MET > 10 GeV.

Hadronic channel

- No good leptons.
- Define $m_{\rm vis}$ as the mass of all visible particles, and require:
 - $|m_{\rm vis} 91.0| < 5 \,\,{\rm GeV}$
- require MET > 15 GeV.

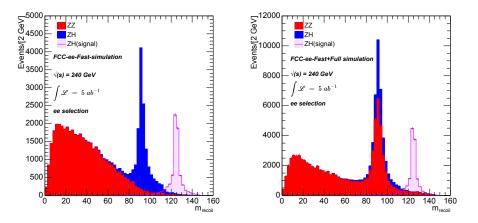
Assessing sensitivity on fast sim only

- Recoil mass distributions for the different selection channels.
- Only fast simulation is considered.
- The signal and bkgs are normalized with their generator cross-section (p8 for ZZ and wzp6 for ZH).
- For better visualization the signals are scaled by 15 for ee and $\mu\mu$ selections, and 20 for the qq selection.

Limit results

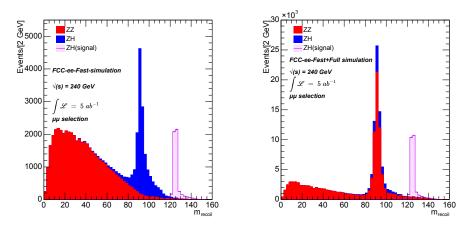
Limit set on $\mathcal{B}(H \to \text{inv})$ in %					
channel	-2σ	- 1σ	Limit	$+1\sigma$	$+2\sigma$
ee	0.02	0.03	0.04	0.06	0.08
$\mu\mu$	0.02	0.03	0.04	0.06	0.07
qq	0.04	0.05	0.07	0.09	0.12

Expected limit set on cross-section

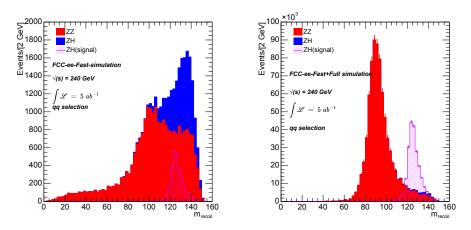

- The limit is obtained by fitting the recoil mass distributions shown in the previous slides.
- The two bkg components (ZZ+ZH) are combined in the limit setting procedure.
- The qq channel gives the worst limit.

Fast and full sim combination for limit study

- The full sim bkg samples used in these studies were generated with the following channels:
 - For ZH: $Z \to \nu\nu$ and $H \to ee\nu\nu$, $\mu\mu\nu\nu$, $qq\nu\nu$, $b\bar{b}$.
 - For ZZ: $ee\nu\nu$, $\mu\mu\nu\nu$, $qq\nu\nu$, eeqq, $\mu\mu qq$, qqqq.
- In order to combine fast and full sim these channels are vetoed in the fast sim samples.


• For the signal, only full sim is used.

recoil mass distribution for ee selection

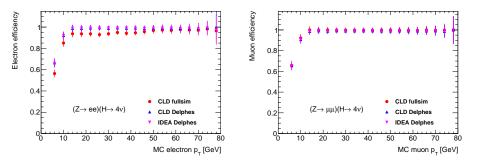

- Left \rightarrow fast sim with full sim final states vetoed.
- Right \rightarrow fast and full sim combined.
- ee selection is considered.
- The signal is scaled by 1000 for better visualization.

recoil mass distribution for $\mu\mu$ selection

- Left \rightarrow fast sim with full sim final states vetoed.
- Right \rightarrow fast and full sim combined.
- $\mu\mu$ selection is considered.
- The signal is scaled by 1000 for better visualization.

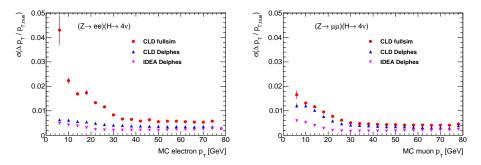
recoil mass distribution for qq selection

- Left \rightarrow fast sim with full sim final states vetoed.
- Right \rightarrow fast and full sim combined.
- qq selection is considered.
- The signal is scaled by 1000 for better visualization.

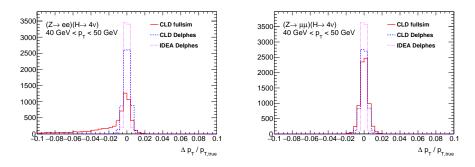

Limit results

Limit set on $\mathcal{B}(H \to \text{inv})$ in%					
channel	-2σ	-1σ	Limit	$+1\sigma$	$+2\sigma$
ee	0.15	0.20	0.28	0.40	0.54
$\mu\mu$	0.08	0.11	0.15	0.21	0.29
qq	0.09	0.12	0.16	0.23	0.31

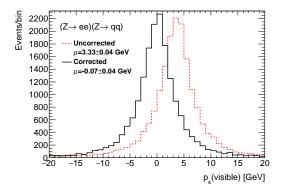
Expected limit


- The limit is obtained by fitting the recoil mass distributions shown in the previous slides.
- The two bkg components (ZZ+ZH) are combined in the limit setting procedure.
- The best limit is obtained with 2μ selection and qq selection is the worse limit.
- The limit result is 1 order of magnitude worse compared to the fast simulation one (slide 5) which could be explained by the bad resolution/efficiency of the full simulation as detailed in the next slides.

Efficiency study between fast sim and full sim


- Using WHIZARD $(Z \to ee/\mu\mu)(H \to 4\nu)$ samples.
- Same samples processed with CLD full simulation and CLD and IDEA Delphes fast simulation.
- Efficiency is nearly identical for IDEA and CLD fast simulation.
- Electron efficiency is worse for full sim than for fast sim, especially at low p_T .
- But muon efficiency is very similar for full and fast simulation.

Resolution study between fast sim and full sim


- Using WHIZARD $(Z \to ee/\mu\mu)(H \to 4\nu)$ samples.
- Same samples processed with CLD full simulation and CLD and IDEA Delphes fast simulation.
- Resolution is worse for CLD than IDEA fast simulation. This is more pronounced for muon than electron.
- Resolution is worse for full sim than for fast sim, especially at low p_T and also for electron.

Resolution study between fast sim and full sim

- These plots correspond to one p_T slice: $40 \text{ GeV} < p_T < 50 \text{ GeV}$.
- We note the low-end tail on the electron resolution that is not reproduced by the fast simulation.

Effect on the crossing angle p_x (visible)

- $p_x(visible) \rightarrow x$ component of the total momentum for the ZZ samples with final states qqqq, eeqq, and $\mu\mu qq$.
- Correction \rightarrow boost in the negative x direction by $\beta = \sin(\theta/2)$, where $\theta \rightarrow$ total crossing angle of 0.03 rd.
- This effect is not seen/included in fast simulation.

Conclusion

- A study on the Higgs \rightarrow inv at $\sqrt{(s)} = 250$ GeV is presented.

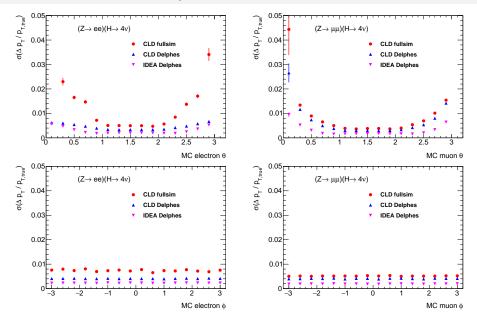
 - A combination of fast and full simulations is used. The recoil mass is fitted to set limit on $\mathcal{B}(H \to \text{inv})$ and the best limit is obtained with $\mu\mu$ selection channel while qq is shows the worse limit results.

Conclusion

- A study on the Higgs \rightarrow inv at $\sqrt{(s)} = 250$ GeV is presented.
 - A combination of fast and full simulations is used.
 The recoil mass is fitted to set limit on B(H → inv)and the best
 - The recoil mass is fitted to set limit on $\mathcal{B}(H \to \text{inv})$ and the best limit is obtained with $\mu\mu$ selection channel while qq is shows the worse limit results.
- A comparison on the lepton reconstruction between CLD full simulation and Delphes simulations of CLD and IDEA is shown.
- A study of the efficiency and resolution are performed for this comparison.
 - A nearly identical efficiency is observed for IDEA and CLD fast sim.
 - Electron efficiency is worse for full sim than for fast sim, especially at low p_T .
 - Muon efficiency is very similar for full and fast simulation.
 - The resolution in one p_T slice shows a low-end tail on the electron distribution in full sim which is not reproduced in fast sim.

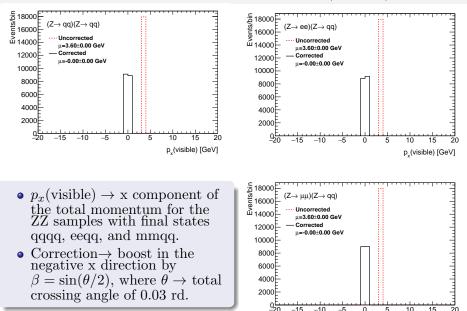
Conclusion

- A study on the Higgs \rightarrow inv at $\sqrt{(s)} = 250$ GeV is presented.
 - A combination of fast and full simulations is used.
 The recoil mass is fitted to set limit on B(H → inv)and the best
 - The recoil mass is fitted to set limit on $\mathcal{B}(H \to \text{inv})$ and the best limit is obtained with $\mu\mu$ selection channel while qq is shows the worse limit results.
- A comparison on the lepton reconstruction between CLD full simulation and Delphes simulations of CLD and IDEA is shown.
- A study of the efficiency and resolution are performed for this comparison.
 - A nearly identical efficiency is observed for IDEA and CLD fast sim.
 - Electron efficiency is worse for full sim than for fast sim, especially at low p_T .
 - Muon efficiency is very similar for full and fast simulation.
 - The resolution in one p_T slice shows a low-end tail on the electron distribution in full sim which is not reproduced in fast sim.
- The crossing angle effect is also studied.
 - A small asymmetry is observed when considering qqqq, eeqq, $\mu\mu qq$ final state.
 - The asymmetry disappears when all final states are considered.


Backup

BACKUP

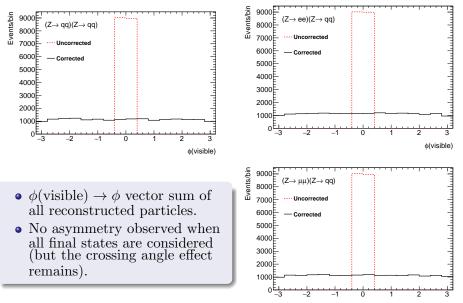
Efficiency study between fast sim and full sim


Resolution study between fast sim and full sim

D. Boye, S. Snyder, K. Assamagan, A. Sciandra. Second ann

18 / 20

Effect on the crossing angle p_x (visible)



p (visible) [GeV]

19 / 20

D. Boye, S. Snyder, K. Assamagan, A. Sciandra. Second ann

Effect on the crossing angle ϕ (visible)

