FCC BEAM BACKGROUND STUDIES WITH GUINEA-PIG

CASEY LAWSON, LINDSEY GRAY

CMLAWSON@MIT.EDU | PHYSICS

26 March 2024

Including information from:

OVERVIEW

Design of the Machine Detector Interface area for the Future Circular Collider (FCC) is particularly challenging

- New beam-pipe central chamber design of the e+e- collider featuring a smaller radius and shorter length is being considered
- Critical to assess the background-induced occupancy and the impact of beam and machine-induced background

The importance of background varies with beam energies, emittance, bunch particle type etc.

 Can be simulated and understood using Guinea-Pig++

GUINEA-PIG++

Generator of Unwanted Interactions for Numerical Experiment Analysis – Programme Interfaced to GEANT

- Simulates the interaction of two colliding ultra-relativistic beams containing electrons, positrons and photons (others can be approximated using tricks)
- Made for single collisions, can be used for repeated collisions at some level
- Capable of providing output in the common event data model in the key4hep framework

Includes:

Pinching of the beams • Emission of beamstrahlung • Initial state radiation • Production of incoherent pair background • Bremsstrahlung • Beam size effect • Production of hadronic background (also minijets)

VERIFYING GUINEA-PIG OUTPUT WITH CLIC AND C3

C3 vs CLIC: Both proposed compact linear colliders designed for high-energy collisions

Compact Linear Collider (CLIC) is designed for energies in the multi-TeV range. To achieve such high luminosities at a linear collider, very small beams and a high beam repetition rate are needed

The Cool Copper Collider (C3) relies on normal copper conducting accelerating technology with a novel cavity design which can achieve cryogenic temperatures, likely in the sub-TeV range

C³ Timing Structure

GUINEA-PIG PARAMETERS: C3 AND CLIC

Definitions: https://gitlab.cern.ch/clic-software/guinea-pig/-/blob/master/doc/GuineaPigManual.pdf

Variable	Definition	CLIC	C3 (250 Com)
energy	The energy of the particles in GeV.	1500	125
particles	The number of particles per bunch in units of [10^10]	0.4	0.625
beta_x	The horizontal beta function in mm	8.0	12.0
beta_y	The vertical beta function in mm	0.15	0.12
emitt_x	Normalized horiz emittance in 10^-6 mrad	0.68	0.9
emitt_y	Normalized vertical emittance in 10^-6 mrad	0.02	0.02
sigma_z	The longitudinal beamsize in μ m, the RMS value	44.0	100
espread	The RMS value of the relative energy spread of the beam particles.	0.001	0.003
dist_z	charge distribution (0 = normal)	0	0
offset_x	Horizontal offset in nm	-1.9055	5.0
offset_y	Vertical offset in nm	-0.242605	0.2
n_b	number of bunches per train (not used)	312	133
f_rep	repeition frequency (not used)	100	120

GUINEA PIG OUTPUT

Incoherent Pairs after beam-beam interaction:

Particle Energy [GeV] | Beta_x | Beta_y | Beta_z | x [nm] | y [nm] | z [nm] | process (*)

Pair Production Process

When beam electrons radiate photons (beamstrahlung), the produced photons may convert into pairs of an electron and a positron through one of the processes:

GUINEA PIG OUTPUT: C3 VS CLIC

GUINEA PIG OUTPUT: BETA_Z

133 bunches configured with C³ parameters

[Lindsey Gray, Collider Background Studies, 2024]

ENVELOPE PLOT: C3

Qualitative depiction of beam interaction region

Red line is latest placement of beam pipe at C3

 most recent SiD geometry has first layer at 14mm away from IR

FCC-EE VERTEX DETECTOR

Detector concepts:

CLD Detector

ALLEGRO Concept

IDEA detector

- Silicon vertex detector
- Beam pipe R~1.0 cm
- 2T B field

FCC-EE BEAM PARAMETERS

Variable	Definition	Input FCC [Z]
energy	The energy of the particles in GeV.	45.6
particles	The number of particles per bunch in units of [10^10]	24.3
beta_x	The horizontal beta function in mm	100
beta_y	The vertical beta function in mm	0.8
espread	The RMS value of the relative energy spread of the beam particles.	0.00038
sigma_x	The horizontal beamsize in nm	8426.1
sigma_y	The vertical beamsize in nm.	33.7
sigma_z	The longitudinal beamsize in μm , the RMS value	15400.0
angle_x	The horizontal angle in rad	<mark>0.015</mark>

Key distinguishing feature: 30 mrad crossing angle

FCC-EE GP OUTPUT

- 1300 pairs per Bx
- Results agree with Ciarma et al 2022 FCC-ee background study
- Landau-Linfshitz dominates due to lower energy photons producing incoherent pairs

FCC Particle z-position: 143Bx

FCC-EE ENVELOPE

• Smearing of envelope pattern

• Beam intensity is an order of magnitude lower than C3, meaning we can push much closer to the beam interaction region

C3 envelope:

FCC pairs / Occupancy

		Z	WW	ZH	tī
1	Pairs/BX	1300	1800	2700	3300
10^{-6}	$O_{max}(VXDB)$	70	280	410	1150
10^{-6}	$O_{max}(VXDE)$	23	95	140	220
10^{-6}	$O_{max}(\text{TRKB})$	9	20	38	40
10^{-6}	$O_{max}(\text{TRKE})$	110	150	230	290

CONCLUSION

Preformed incoherent pair background simulation for CLIC, C3, and FCC and compared results

• Guinea-Pig applicable to a wide variety of beam configurations

Compared FCC backgrounds to linear Higgs Factory

- Possible to get closer to beam line at FCC but at the cost of a more uniform increase in detector background hits due to diffuse background distribution
- Further investigation into occupancy is required to understand the impact on tracking from tracking combinations including background hits

Acknowledgments: Lindsey Gray, Dimitris Ntounis , Jan Eysermans, Luca Lavezzo, Christoph Paus

THANK YOU

SOURCES

- Levy, A. (2015). CLICdp Overview: Overview of physics potential at CLIC. https://www.researchgate.net/publication/270824816_CLICdp_Overview_ __Overview_of_physics_potential_at_CLIC
- Ntounis, D., Gray, L., & Vernieri, C. (2023, October 11). Beam-induced Background Simulation Studies for the Cool Copper Collider (C3). https://agenda.infn.it/event/34841/contributions/207749/attachments/1 11336/158925/C3_background_2nd_ECFA_workshop_Higgs_11Oct2023_ DN.pdf
- Giacomelli, Paolo. "The IDEA Detector Concept." INFN Bologna, 25 Mar. 2024. Presentation <u>https://indico.mit.edu/event/876/contributions/2670/attachments/1034/16</u> <u>95/IDEA_detector-concept-FCC-US-2024.pdf</u>
- Ciarma, A., et al. "Machine Induced Backgrounds in the FCC-ee MDI Region and Beamstrahlung Radiation." 65th ICFA Adv. Beam Dyn. Workshop High Luminosity Circular e⁺ e⁻ Colliders eeFACT2022, JACoW Publishing, 2022, pp. TUZAT0203.

FCC-EE BEAM PARAMETERS

Sources:

- Ciarma et al., CERN, Geneve, Switzerland; Boscolo et al., INFN-LNF, Frascati, Italy: <u>https://inspirehep.net/files/33fdd12f387b497d32d7fb 35f3f09d55</u>
- 2. Jeans, D. (KEK/IPNS). "Beam Background Studies with ILD.":

https://indico.slac.stanford.edu/event/7467/contributi ons/6057/attachments/2921/8092/Icws23backgrounds.pdf

3. Bordry, F. et al. CERN, "Machine Parameters and Projected Luminosity Performance of Proposed Future Colliders at CERN.":

https://cds.cern.ch/record/2645151/files/CERN-ACC-2018-0037.pdf

Beam energy	[GeV]	45.6	80	120	182.5
Layout		PA31-1.0			
# of IPs	# of IPs 4				
Circumference	[km]	90.836848			
Bending radius of arc dipole	[km]	1	9.9	37	
Energy loss / turn	[GeV]	0.0391	0.370	1.869	10.0
SR power / beam	[MW]	\sim	50		
Beam current	[mA]	1280	135	26.7	5.00
Bunches / beam		10000	880	248	40
Bunch population	[10 ¹¹]	2.43	2.91	2.04	2.37
Horizontal emittance ε_x	[nm]	0.71	2.16	0.64	1.49
Vertical emittance ε_y	[pm]	1.42	4.32	1.29	2.98
Arc cell		Long	90/90	90	/90
Momentum compaction α_p	$[10^{-6}]$	28	.5	7.	33
Arc sextupole families		7	5	1	46
$\beta_{x/y}^*$	[mm]	100 / 0.8	200 / 1.0	300 / 1.0	1000 / 1.6
Transverse tunes/IP $Q_{x/y}$		53.563 /	53.600	(100.565	/ 98.595
Energy spread (SR/BS) σ_{δ}	[%]	0.038 / 0.132	0.069 / 0.154	0.103 / 0.185	0.157 / 0.221
Bunch length (SR/BS) σ_z	[mm]	4.38 / 15.4	3.55 / 8.01	3.34 / 6.00	191/274
RF voltage 400/800 MHz	[GV]	0.120 / 0	1.0 / 0	2.08 / 0	(2.1 / 9.2)
Harmonic number for 400 MHz			1210	548	
RF freuqeuncy (400 MHz)	MHz	• 	400.79	03257	
Synchrotron tune Q_s		0.0370	0.0801	0.0328	0.0826
Long. damping time	[turns]	1168	217	64.5	18.5
RF acceptance	[%]	1.6	3.4	1.9	3.0
Energy acceptance (DA)	[%]	±1.3	± 1.3	± 1.7	-2.8 + 2.5
Beam-beam ξ_x/ξ_y^a		0.0023 / 0.135	0.011 / 0.125	0.014 / 0.131	0.093 / 0.140
Luminosity / IP	$[10^{34}/cm^2s]$	182	19.4	7.26	1.25
Lifetime $(q + BS + lattice)$	[sec]	840		< 1065	< 4062
Lifetime (lum)	[sec]	1129	1070	596	741

^dincl. hourglass.

K. Oide, Nov. 2022

BACKUP

VERIFYING GUINEA-PIG OUTPUT

C3 vs CLIC: Both proposed compact linear colliders designed for high-energy collisions

C³ Timing Structure

The Cool Copper Collider (C3) relies on normal copper conducting accelerating technology with a novel cavity design which can achieve cryogenic temperatures, likely in the sub-TeV range

[Ntounis, Gray (2023) Beam Induced Background Simulation Studies for the Cool Copper Collider (C3)] CLIC is designed for energies in the multi-TeV range. To achieve such high luminosities at a linear collider, very small beams and a high beam repetition rate are needed

[Levy, A. (2015). CLICdp Overview]

C3 PARAMETERS [250 GEV COM]

Parameter	Units	Value	
β_x^*	mm	12	
β_y^*	mm	0.12	
$\epsilon^*_{N,x}$	nm	900	
$\epsilon^*_{N,y}$	nm	20	
σ_x^*	nm	210.12	
σ_y^*	nm	3.13	
σ_z^*	μm	100	
n_b		133	-
frep	Hz	120	/
N		$6.25 \cdot 10^{9}$	
θ_c	rad	0.014	

	Initial Tests	Emilio's Values
Energy spread	0.1%	0.3%
Energy spread distribution	Gaussian	Flat
Offset in x direction (nm)	0	5
Offset in y direction (nm)	0	0.2
Waist shift in x direction (µm)	0	0
Waist shift in y direction (µm)	0	0
Crossing angles (not compensated by crab scheme)	0	0

FCC-EE PARAMETERS

Beam energy	[GeV]	45.6	80	120	182.5
Layout			PA31	-1.0	
# of IPs			4		
Circumference	[km]		90.83	6848	
Bending radius of arc dipole	[km]		9.9	37	
Energy loss / turn	[GeV]	0.0391	0.370	1.869	10.0
SR power / beam	[MW]	0	5		
Beam current	[mA]	1280	135	26.7	5.00
Bunches / beam		10000	880	248	40
Bunch population	[10 ¹¹]	2.43	2.91	2.04	2.37
Horizontal emittance ε_x	[nm]	0.71	2.16	0.64	1.49
Vertical emittance ε_y	[pm]	1.42	4.32	1.29	2.98
Arc cell		Long	90/90	90	/90
Momentum compaction α_p	$[10^{-6}]$	28	.5	7.	33
Arc sextupole families		7	5	1	46
$\beta^*_{x/y}$	[mm]	100 / 0.8	200 / 1.0	300 / 1.0	1000 / 1.6
Transverse tunes/IP $Q_{x/y}$		53.563 /	53.600	(100.565	/ 98.595
Energy spread (SR/BS) σ_{δ}	[%]	0.038 / 0.132	0.069 / 0.154	0.103 / 0.185	0.157 / 0.221
Bunch length (SR/BS) σ_z	[mm]	4.38 / 15.4	3.55 / 8.01	3.34 / 6.00	191/274
RF voltage 400/800 MHz	[GV]	0.120 / 0	1.0 / 0	2.08 / 0	(2.1 / 9.2)
Harmonic number for 400 MHz		Constant of the second s	1210	548	
RF freuqeuncy (400 MHz)	MHz		400.79	03257	
Synchrotron tune Q_s		0.0370	0.0801	0.0328	0.0826
Long. damping time	[turns]	1168	217	64.5	18.5
RF acceptance	[%]	1.6	3.4	1.9	3.0
Energy acceptance (DA)	[%]	± 1.3	± 1.3	± 1.7	-2.8 + 2.5
Beam-beam ξ_x/ξ_y^a		0.0023 / 0.135	0.011 / 0.125	0.014 / 0.131	0.093 / 0.140
Luminosity / IP	$[10^{34}/cm^2s]$	182	19.4	7.26	1.25
Lifetime $(q + BS + lattice)$	[sec]	840	-	< 1065	< 4062
Lifetime (lum)	[sec]	1129	1070	596	741

Parameter [4 IPs, 91.2 km]	Z	WW	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
horizontal beta* [m]	0.1	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.64	1.49
vertical geom. emittance [pm]	1.42	4.34	1.29	2.98
horizontal rms IP spot size [µm]	8	21	14	39
vertical rms IP spot size [nm]	34	66	36	69

parameter (4 IPs, $t_{rev}=304~\mu s$)	value
circumference [km]	91.18
max. beam energy [GeV]	182.5
max. beam current [mA]	1280
max. # of bunches/beam	10000
min. bunch spacing [ns]	25
max. bunch intensity [1011]	2.43
min. H geometric emittance [nm]	0.71
min. V geometric emittance [pm]	1.42
min. H rms IP spot size [µm]	8
min. V rms IP spot size [nm]	34
min. rms bunch length SR / BS [mm]	1.95 / 2.75

^dincl. hourglass,

K. Oide, Nov. 2022

3/25/2024

FCC-EE BEAM PARAMETERS

- We've been using multiple sources to cross check
- We can also verify the consistency of each dataset using the relationship of emittance ϵ , sigma σ and beta β

$$\sigma_n = \sqrt{\varepsilon \beta^*}$$

Table 1: FCC-ee beam parameters for the 4 IPs lattice

		Z	WW	ZH	tī
GeV	Е	45.6	80.0	120.0	182.5
nm rad	ϵ_x	71	2.16	64	1.49
pm rad	ϵ_y	1.42	4.32	1.29	2.98
mm	β_x/β_y	100/0.8	200/1	300/1	1000/1.6
μm	σ_x	8.426	20.78	13.86	38.60
nm	σ_y	33.70	65.73	35.92	69.05
mm	σ_z	15.4	8.01	6.0	2.8
1011	Ne	2.43	2.91	2.04	2.37
1	N_{bunch}	10000	880	248	40

Ciarma et al., CERN