<u>A new Pixel lab for ELementary Physics at MIT</u> focus on the MAPS-based SVT detector for the EIC

Gian Michele Innocenti (MIT) US FCC Workshop 2024 MIT, March 25-27, 2024

https://pixelphilab.mit.edu

Overview of the talk

Brief introduction to MAPS technology for HEP

The Silicon Vertex Tracker for the ePIC experiment at the EIC

- stitched MAPS sensors for ITS3 and SVT
- detector overview
- technological challenges and ongoing R&D

PixELphi lab at MIT for SVT and beyond

MAPS technology for elementary particle and nuclear physics

MAPS technology for ALICE ITS2 and sPHENIX MVTX

Monolithic Active Pixel Sensors in 180 nm

- Low power consumption heat dissipation
- Thinner/less material
- Commercial process (CMOS)
- Small pixel pitches ~ 10-30 µm

\rightarrow ideal choice for very high-resolution trackers for moderate-radiation environment

First large-area MAPS-based detectors:

 \rightarrow traditional staved trackers with reduced material budget and improved resolution

The new "stitched" ITS3 MAPS technology in 65 nm

With power consumption <40 mW/cm² → Air-based cooling, no need for liquid-based cooling

\rightarrow No FPC for data readout and powering

Thanks to the intrinsic stiffness of the curved silicon wafer

→ Minimal mechanical support

The ITS3 upgrade for ALICE in Run 4

ITS3 upgrade:

- high-occupancy low-interaction rate (PbPb at the LHC)
- only three layers (radii from 1.90 to 3.15 cm)
- small pseudorapidity coverage (no strong constraints on material budget due to services)

Beampipe inner/outer radius (mm)		16.0/16.5	
IB Layer parameters	Layer 0	Layer 1	Layer 2
Radial position (mm)	19.0	25.2	31.5
Length (sensitive area) (mm)	260	260	260
Pseudo-rapidity $coverage^{a}$	± 2.5	± 2.3	± 2.0
Active area (cm^2)	305	407	507
Pixel sensors dimensions (mm^2)	266×58.7	266×78.3	266×97.8
Number of pixel sensors / layer		2	
Material budget (% X_0 / layer)	0.07		
Silicon thickness $(\mu m / layer)$	≤ 50		
Pixel size (μm^2)	$O(20 \times 22.5)$		
Power density (mW/cm^2)	40		
NIEL $(1 \mathrm{MeV} \mathrm{n_{eq}} \mathrm{cm}^{-2})$	10^{13}		
TID (kGray)	10		

ALICE ITS3, CERN-LHCC-2024-003 / ALICE-TDR-021

Towards large-area detectors with stitched MAPS: the Silicon Vertex Detector for ePIC

The SVT ePIC detector (in green)

SVT disks

SVT inner barrel

SVT outer layers

total area of ~8.5 m²

SVT disks

The SVT inner barrel ("bent" layers 0, 1, 2)

SVT inner barrel

ePIC specific needs:

- reduce services at forward/backward
- mechanical stability in the presence of a R=12 cm layer (R_{ITS3}^{max} is < 4 cm!)
- air cooling strategy is more challenging due to the presence of the disks

built with bent ITS3 wafer-size sensors

- minimal support structure (carbon foam)
- air cooling (~ few m/s)
- Radii = 3.6, 4.8, 12 cm
- Lengths = 27 cm

 $_{S3}^{IX}$ is < 4 cm!) of the disks

The SVT inner barrel ("bent" layers 0, 1, 2)

SVT inner barrel

ePIC specific needs:

- reduce services at forward/backward
- mechanical stability in the presence of a R=12 cm layer (R_{ITS3}^{max} is < 4 cm!)
- air cooling strategy is more challenging due to the presence of the disks

- built with bent ITS3 wafer-size sensors
- minimal support structure (carbon foam)
- air cooling (~ few m/s)
- Radii = 3.6, 4.8, 12 cm
- Lengths = 27 cm

 $_{53}^{x}$ is < 4 cm!) of the disks

The SVT outer barrel (layers 3, 4) and disks

SVT disks SVT outer layers SVT disks

Challenges:

• preserve the low material budget in the presence of carbon fiber supports and services

• disk geometry can obstruct air cooling for the inner barrel

→ SVT for ePIC as the most advanced application of stitched MAPS sensors for large-area wide-acceptance detectors → unique benchmark for a future MAPS-based FCC tracker

"Flat" Large Area Sensors (LASs) derived from ITS3 optimised for covering large surfaces

- traditional staved structure (not bent)
- carbon fibre support
- integrated cooling (liquid or air)

PixEL\varphi lab at MIT

Silicon detectors in the MIT heavy-ion group

PHOBOS experiment at RHIC

AC-coupled, single-sided, silicon pad for tracking, vertexing, and multiplicity

CMS tracker ("hybrid pixels") commissioning pixel and strip detectors for heavy-ion runs

Monolithic Active Vertex Tracker (MVTX) for **sPHENIX** with ALICE ITS2 technology

- mechanical design, cooling, and integration
- module characterization
- DCS design, installation and commissioning

12

MIT PixEL φ : a Silicon Pixel Lab for ELementary physics at MIT

Silicon Vertex Tracker (SVT) for the ePIC experiment at the **Electron-Ion Collider**

MVTX for the sPHENIX experiment

Artificial intelligence with FPGA for MAPS detectors

Key strategy for the SVT project:

- \rightarrow short term: build a CERN-based MIT pixel lab to maximize synergies with the R&D for ALICE ITS3
- → middle-long term: MIT as a leading institute to exploit next-generation MAPS for particle physics

→ Next generation "stitched" MAPS technology for high-accuracy detectors for high-energy and nuclear physics

Overview of the R&D phases of the ITS3/SVT sensors

Stitched bent sensors for ITS3 and first three layers of the SVT

MLR1: qualification of CMOS 65nm technology, prototype for circuit blocks **ER1**: stitching technology demonstrator (MOSS and MOST sensor), yield studies

Stitched flat sensors for the outer layers of the SVT detector:

Large Area Sensor (11): stitched "flat" larger area sensor

ER2: fully functional sensor that satisfy ITS3 requirements

ER3: final production and design (bug fixes from ER2)

SVT at the ePIC: timescale and synergies with the ITS3 project

Stronger synergy with ITS3 R&D

Key strategy of MIT PixELphi lab for the SVT project:

- build a CERN-based MIT pixel lab to maximize synergies with the R&D for ALICE ITS3 for ER2/ER3
- specific R&D for SVT detector (focus on data and service reduction)

ePIC/EIC specific

h the R&D for ALICE ITS3 for ER2/ER3 luction)

MIT PixEL φ lab for the SVT: sensor design

Sensor design for ER2/ER3 (MIT engineer working in the CERN micro-electronic department) • digital design, test, and signoff of the Engineering Run 2/3

• development and implementation of digital blocks in the Repeated Stitched Units (RSU) and Left End-Cap (LEC) of the ITS3 sensor

16

MIT PixEL φ lab for the SVT: sensor test and readout R&D

Developing a new testing system to perform high-frequency tests on MAPS using a wafer probe setup

• development of the ER2 test system with probe cards, adapter cards, and software that will automate pixel matrix scans \rightarrow coordinating the SVT working group on sensor testing and characterization

• Challenges: high-frequency, low impedance with very thin sensors → crucial R&D to exploit stitched sensors for large-area detectors

New 12 inches machine acquired by MIT PixEL φ \rightarrow optimized for testing of thin wafter

17

MIT PixEL φ lab for the SVT: sensor test and readout R&D

Developing a new testing system to perform high-frequency tests on MAPS using a wafer probe setup

• development of the ER2 test system with probe cards, adapter cards, and software that will automate pixel matrix scans \rightarrow coordinating the SVT working group on sensor testing and characterization

Design and optimize the SVT readout strategy for service reduction

• multiplexing strategy for the output links of the EIC LAS with FPGAbased technologies (short term) and with AI on MAPS

Conclusions

New lab PixELphi to exploit new generation MAPS for high-energy and nuclear physics

Long-term focus: exploit and develop MAPS for large-area large-n detectors → clear synergy with the R&D for a future FCC tracker

Thank you very much for your attention!

 \rightarrow Please get in touch if you are interested in collaborating with us! <u>https://pixelphilab.mit.edu</u>

Key role in the R&D for the new MAPS sensors for SVT tracker at EIC

 \rightarrow ongoing effort on sensor design, readout R&D, and R&D for new testing strategies for large MAPS

