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Overview of the talk

Brief introduction to MAPS technology for HEP

The Silicon Vertex Tracker for the ePIC experiment at the EIC
- stitched MAPS sensors for ITS3 and SVT

» detector overview

» technological challenges and ongoing R&D

PixELphi lab at MIT for SVT and beyond
- MAPS technology for elementary particle and nuclear physics
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ALICE ITS3, CERN-LHCC-2024-003 / ALICE-TDR-021

The new “stitched™ ITS3 MAPS technology in 65 nm
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https://cds.cern.ch/record/2890181?ln=en

ALICE ITS3, CERN-LHCC-2024-003 / ALICE-TDR-021

The ITS3 upgrade for ALICE in Run 4

ITS3 upgrade:
* high-occupancy low-interaction rate (PbPb at the LHC)
- only three layers (radii from 1.90 to 3.15 cm) (b)
- small pseudorapidity coverage (no strong constraints on
material budget due to services)

Beampipe inner /outer radius (mm) 16.0/16.5

IB Layer parameters Layer 0 Layer 1 Layer 2
Radial position (mm) 19.0 25.2 31.5
Length (sensitive area) (mm) 260 260 260
Pseudo-rapidity coverage® +2.5 +2.3 +2.0
Active area (cm?) 305 407 507
Pixel sensors dimensions (mm?) 266 x 58.7 266 x 78.3 266 x 97.8
Number of pixel sensors / layer 2

Material budget (%Xo / layer) 0.07

Silicon thickness (um / layer) <50

Pixel size (pm?) 0(20 x 22.5)

Power density (mW /cm?) 40

NIEL (1 MeV neq cm™?) 1013

TID (kGray) 10



https://cds.cern.ch/record/2890181?ln=en

Towards large-area detectors with stitched MAPS:
the Silicon Vertex Detector for ePIC
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The SVT ePIC detector (in green)

SVT outer layers total area of ~8.5 m?2

SVT disks SVT inner barrel SVT disks



The SVT inner barrel ("bent” layers 0, 1, 2)

* built with bent ITS3 wafer-size sensors
* minimal support structure (carbon foam)
« air cooling (~ few m/s)

* Radii = 3.6, 4.8, 12 cm
* Lengths = 27 cm

ePIC - SVT

ALICE - ITS3

SVT inner barrel fﬁ

ePIC specific needs:

- reduce services at forward/backward \/
- mechanical stability in the presence of a R=12 cm layer (Ry¢; is < 4 cml)
» air cooling strategy is more challenging due to the presence of the disks
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The SVT outer barrel (layers 3, 4) and disks

“Flat” Large Area Sensors (LASs) derived from ITS3
optimised for covering large surfaces

* traditional staved structure (not bent)

- carbon fibre support

* integrated cooling (liquid or air)

SVT disks SVT outer layers  SVT disks

Challenges:
» preserve the low material budget in the presence of carbon fiber supports and services
» disk geometry can obstruct air cooling for the inner barrel

— SVT for ePIC as the most advanced application of stitched MAPS sensors for large-area wide-acceptance detectors
— unique benchmark for a future MAPS-based FCC tracker
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PIXELo lab at MIT



Silicon detectors in the MIT heavy-ion group

PHOBOS experiment at RHIC
AC-coupled, single-sided, silicon pad
for tracking, vertexing, and multiplicity

CMS tracker (“hybrid pixels™)
commissioning pixel and strip
detectors for heavy-ion runs

1990 2000

IST for STAR at

2010

R. Nouicer, B. Wislouch et al., Nucl.

Instrum. Meth. A461:143-149, 2001

Monolithic Active Vertex Tracker (MVTX) for
sPHENIX with ALICE ITS2 technology
* mechanical design, cooling, and integration

 module characterization

- DCS design, installation and commissioning

RHIC

2020

Ultra-fast silicon timing detector
for CMS in Run 4

2030
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MIT PIxELy : a Silicon Pixel Lab for ELementary physics at MIT

— Next generation “stitched” MAPS technology for high-accuracy detectors for high-energy and nuclear physics

Silicon Vertex Tracker MVTX for the sPHENIX  Artificial intelligence

(SVT) for the ePIC experiment with FPGA for MAPS
experiment at the detectors
Electron-lon Collider

Key strategy for the SVT project:

— short term: build a CERN-based MIT pixel lab to maximize synergies with the R&D for ALICE ITS3
— middle-long term: MIT as a leading institute to exploit next-generation MAPS for particle physics
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Overview of the R&D phases of the ITS3/SVT sensors

‘Stitched bent sensors for ITS3 and first three layers of the SVT

MLR1: qualification of ER1: stitching technology
CMOS 65nm technology, demonstrator (MOSS and
Qrototype for circuit blocks MOST sensor), yield studies

ER2: fully functional sensor ER3: final production and
that satisfy ITS3 requirements  design (bug fixes from ER2

~

st

itched flat sensors for the outer layers of the SVT detector:

kLarge Area Sensor (11): stitched “flat” larger area sensor

L
-
W
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SVT at the ePIC: timescale and synergies with the ITS3 project

Stronger synergy with ITS3 R&D ePIC/EIC specific

EIC LAS design

— SVT sensor EIC first EIC data-taking

EIC LAS v production phase collisions for physics

fabrication and testing
-—)

2022 2023 2024 T 2025 T 2026 2027 2028

ER2 design  First test results
files ready with ER2
Q2 2024 Q2 2025

Key strategy of MIT PixELphi lab for the SVT project:
* build a CERN-based MIT pixel lab to maximize synergies with the R&D for ALICE ITS3 for ER2/ER3
- specific R&D for SVT detector (focus on data and service reduction)
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MIT PixELo lab for the SVT: sensor design

Sensor design for ER2/ER3 (MIT engineer working in the CERN micro-electronic department)
- digital design, test, and signoff of the Engineering Run 2/3
- development and implementation of digital blocks in the Repeated Stitched Units (RSU) and Left End-Cap (LEC) of the ITS3 sensor
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MIT PixELo lab for the SVI: sensor test and readout R&D

Developing a new testing system to perform high-frequency tests on MAPS using a wafer probe setup
- development of the ER2 test system with probe cards, adapter cards, and software that will automate pixel matrix scans
— coordinating the SVT working group on sensor testing and characterization
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 Challenges: high-frequency, low impedance with very thin sensors
— crucial R&D to exploit stitched sensors for large-area detectors

New 12 inches machine acquired by MIT PixELgp
— optimized for testing of thin wafter
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Design and optimize the SVT readout strategy for service reduction
* multiplexing strategy for the output links of the EIC LAS with FPGA-
based technologies (short term) and with Al on MAPS
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Conclusions Sl

New lab PixELphi to exploit new generation MAPS for high-energy and nuclear physics

‘ p— Key role in the R&D for the new MAPS sensors for SVT tracker at EIC
== — Ongoing effort on sensor design,
_ | readout R&D, and R&D for new testing strategies for large MAPS

Long-term focus: exploit and develop MAPS for large-area large-n detectors
— clear synergy with the R&D for a future FCC tracker

Thank you very much for your attention!
— Please get in touch if you are interested in collaborating with us! https://pixelphilab.mit.edu
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