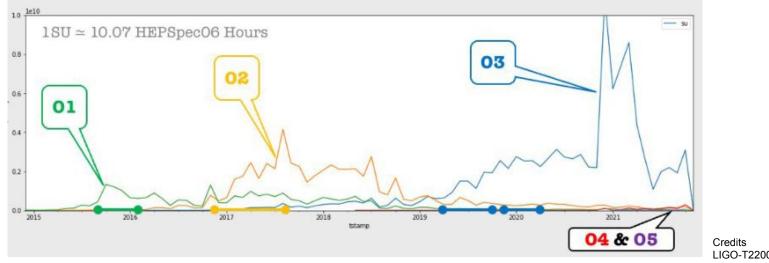
Parameter Estimation of Un-modeled Gravitational-wave Signals using Likelihood-free Inference

Deep Chatterjee, Ethan Marx W. Benoit, A. Gunny, E. Katsavounidis, P. Harris, M. Coughlin, E. Moreno, R. Raikman, K. Govorkova

> subMIT IAP Workshop Feb 2, 2024

Motivation



Credits LIGO-T2200209 (Circa 2022)

- Computing cost for searching, inferring parameters, cataloging is increasing with every LVK observing run.
- This is true for most other experiments.
- *Real-time inference is important that ever.*

Parameter Estimation

In experimental physics/astronomy:

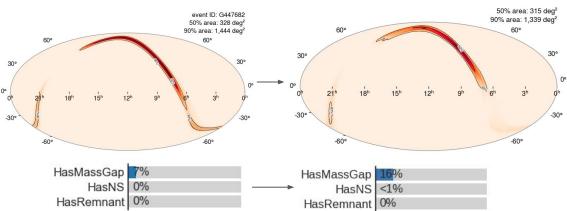
- We have a model
 - In the case of gravitational waves, it is waveforms from general relativity.
- We collect data
 - \circ For GWs, this is the strain.
- We have a search that tells us if a segment of data is interesting
 - Can be archival (offline) or real-time (online)
 - \circ $\:$ In GWs we have modeled searches based on GR waveforms
 - Or unmodeled searches
- Parameter estimation measure parameters and confidence intervals
 - Traditionally done using stochastic sampling MCMC, nested sampling,...
 - Roughly this involves: Propose a point in param space, *generate model, compute likelihood*, accept/reject point, propose new point,...repeat,...

Parameter Estimation

- Stochastic sampling involves repeated computation of the likelihood.
- Several methods developed to compute the likelihood efficiently.
 Ex. <u>ROQ</u>, <u>SVD</u>, <u>Heterodyning</u>.
 Currently online parameter estimation involves <u>focused ROQ</u>
- Current (O4) parameter estimation times ~ couple of hours
- Comparison to O3: several hours to a day.
 - Update to Sky localization and source properties

<u>S231020ba</u>

Posterior $\longrightarrow p(\Theta | \mathbf{d}) \propto p(\mathbf{d} | \Theta) \ p(\Theta)$



Likelihood

Prior

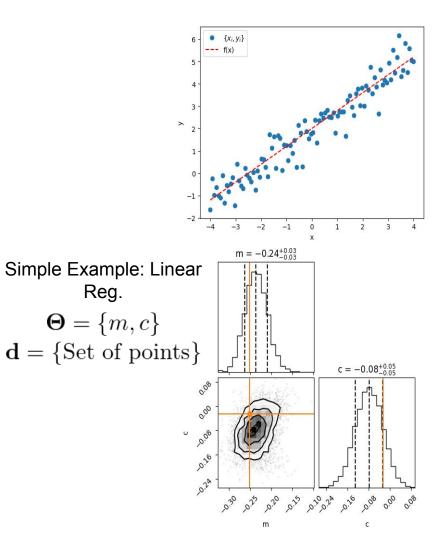
Not in the ~second regime yet; May not scale to the next gen. instruments

Likelihood-free Inference

An entirely different approach

We have simulations to generate data

We have combinations of $\{\Theta_i, \mathbf{d}_i\}$ In principle we have $p(\Theta, \mathbf{d})$ And hence, can get $p(\Theta|\mathbf{d})$ or $p(\mathbf{d}|\Theta)$



Challenge: Distributions may be complex

Solution: To find transforms to obtain a simpler distribution.

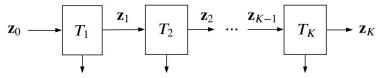
Normalizing Flows

- Have two components:
 - **Simpler, base distribution**, like a normal dist. easy to sample and density est.
 - **Transform** A neural network that learns to transform complex variable to base distribution

 $\mathbf{x} = T(\mathbf{u}) \quad \text{where} \quad \mathbf{u} \sim p_{\mathbf{u}}(\mathbf{u}).$ $p_{\mathbf{x}}(\mathbf{x}) = p_{\mathbf{u}}(\mathbf{u}) |\det J_T(\mathbf{u})|^{-1} \quad \text{where} \quad \mathbf{u} = T^{-1}(\mathbf{x}).$

- Trained by maximizing likelihood
 - This is easy since base distribution is easy to density estimate from
 - Transform is fast to evaluate*

Details about Normalizing Flow



 $\log |\det J_{T_1}(\mathbf{z}_0)| + \log |\det J_{T_2}(\mathbf{z}_1)| + \cdots + \log |\det J_{T_K}(\mathbf{z}_{K-1})| = \log |\det J_T(\mathbf{z}_0)|$

- Practical details involve how the transform is implemented
 - Affine transforms
 - Splines
 - Integral based
 - 0 ...
- Autoregressive property ensures efficient determinant computation
 - Transforms are lower triang.; determinant equal product of diag. elem.

 $p(z_1, z_2, z_3|d) = p(z_1|z_2, z_3, d) \ p(z_2|z_3, d) \ p(z_3|d)$

• We use a masked autoregressive flow - affine transform between layers

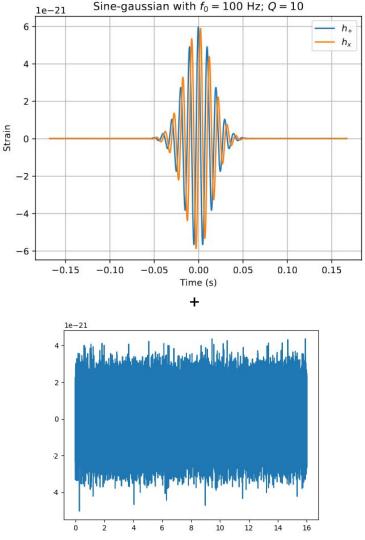
Sine Gaussian Parameter Estimation

- Unmodeled sources; minimal assumptions
- Sine-gaussian forms a wavelet basis
 - Extraction of characteristic amplitude and freq.

$$h_{+}(t) \propto \cos(2\pi f_0(t-t_0) + \phi_0)e^{(-t-t_0)^2/\tau^2}$$

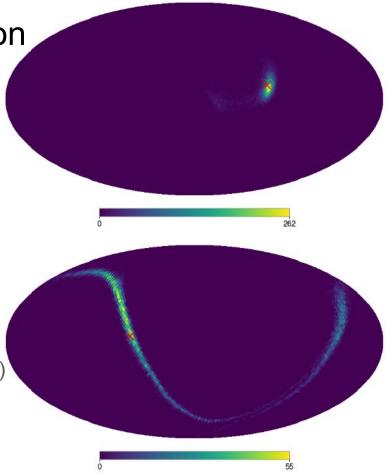
$$h_{\times}(t) \propto \sin(2\pi f_0(t-t_0) + \phi_0)e^{(-t-t_0)^2/\tau^2}$$

	Parameter	Prior	Limits
intrinsic	Frequency	Uniform	(32, 1024)
	Quality	Uniform	(2, 108)
	hrss	Log Uniform	(1e-23, 1e-19)
	Phase ϕ	Uniform	$(0, 2\pi)$
	Eccentricity e	Uniform	(0, 1)
extrinsic	Declination δ	Cosine	$(0, \pi)$
	Right Ascension	Uniform	$(0, 2\pi)$
	Ψ	Uniform	$(0, \pi)$

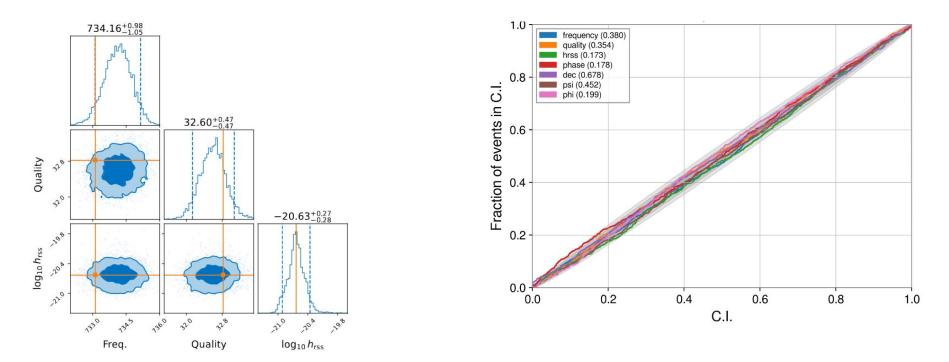


Sine Gaussian Parameter Estimation

- 7 parameter model: strain amp., *central freq., quality*, coal. phase, polarization, *RA, Dec*.
- Signals generation done via torch implementation of sine-gaussian model.
- Injected into a stretch of real noise instance from GW detectors - 1 sec. duration @ 4KHz
- Multiple detector data represented as different channels.
- Data is Embedded coherently into 128 summary features via learnable ResNet.
- Model ~ 10⁵ parameters. Training time ~ O(few hrs) on NVIDIA-A30 (submit-gpu partition)
- Sampling 10³ injections takes ~ 10 minutes; less than 1 second for each injection. (*Paper in prep.*)



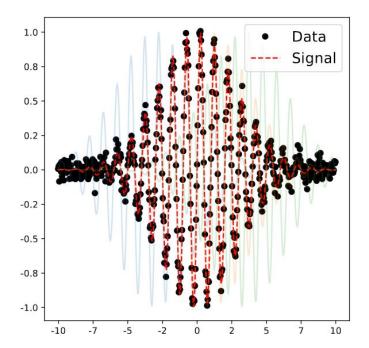
Example Posteriors and PP plots



WIP: Extension to Binary BHs

Incorporating Symmetries/Marginalizing nuisance params.

- Some parameters of the problem may not be important
 - Exact time of arrival of a pulse may not be as interesting as properties of the pulse
- Nuisance parameters can be hard to learn, and then marginalize over
 - NN treats same intrinsic properties, but different time of arrivals as *unique data*.
 - Requires large networks
 - More compute time

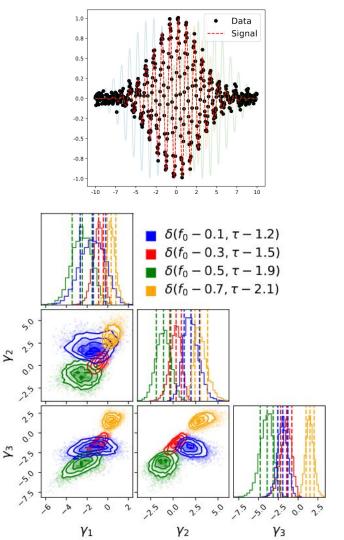


Use of self-supervision

- Marginalize out parameters by joint embedding
 - A batch of data with a fixed reference time of arrival
 - \circ $\,$ A second batch where the time of arrival is varied
 - Embed the data and use a similarity loss between the batches. We use <u>VICReg</u> loss.

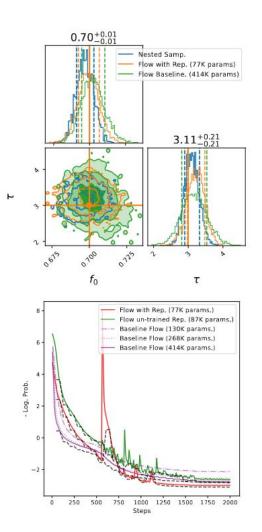
 $\mathcal{L}_{\text{VICReg}}(x, x') = \lambda_1 \text{ MSE}(x, x') + \lambda_2 \left[\text{Var}(x) + \text{Var}(x') \right] + \lambda_3 \left[\text{Cov}(x) + \text{Cov}(x') \right],$

- Use the embedded space as a data summary.
- Condition parameters on this summary.



Optimizing LFI using Self-supervision

- Symmetry informed embeddings lead to faster convergence in a smaller number of parameters
- Comparable results as nested sampling consistent with Cramer-Rao bounds.
- Technique used build summary stats marginalizing over parameters we don't desire.
- Work accepted for NeurIPS <u>ML4PS 2023</u>.
- Technique is broadly applicable across astronomy and physics.



WIP: Application to parameter estimation on lightcurves

Work being done by Malina Desai

