
CMS analysis @subMIT 
With distributed computing

Simon Rothman,
From Phil Harris group

1



Overview

● We are members of CMS experiment 
○ ~ 2-3k collaborators across world
○ Petabytes of data

2



Overview

● We are members of CMS experiment 
○ ~ 2-3k collaborators across world
○ Petabytes of data
○ Free trips to Europe 

3



Overview

● We are members of CMS experiment 
○ ~ 2-3k collaborators across world
○ Petabytes of data
○ Free trips to Europe 

● My current focus is precision 
measurement of strong force

○ New observables
○ Strong theory-experiment correspondence 

4



Overview

● We are members of CMS experiment 
○ ~ 2-3k collaborators across world
○ Petabytes of data
○ Free trips to Europe 

● My current focus is precision 
measurement of strong force

○ New observables
○ Strong theory-experiment correspondence 

● For today, interesting point is 
computational requirements

○ Need access to CMS global resources
○ Need substantial local resources (and a 

way to make use of them!)
○ Will talk some more about this

5



Typical workflow

6

Central CMS 
Data/MC 
datasets

● 10s of TB
● In distributed storage 

across the world 



Typical workflow

7

Central CMS 
Data/MC 
datasets

Custom c++ code
Running on CMS grid

● 10s of TB
● In distributed storage 

across the world 

Requires environment with
● Correctly-configured 

c++ workspace
● Ability to submit to 

CMS grid 



Typical workflow

8

Central CMS 
Data/MC 
datasets

Custom c++ code
Running on CMS grid

Custom “skimmed” 
dataset with only 

needed information

● 10s of TB
● In distributed storage 

across the world 

Requires environment with
● Correctly-configured 

c++ workspace
● Ability to submit to 

CMS grid 

● Reduced size to O(TB)
● Stored @ FNAL 
● Contains only 

interesting quantities 



Typical workflow

9

Central CMS 
Data/MC 
datasets

Custom c++ code
Running on CMS grid

Custom “skimmed” 
dataset with only 

needed information

Local processing 
(python)

● 10s of TB
● In distributed storage 

across the world 

Requires environment with
● Correctly-configured 

c++ workspace
● Ability to submit to 

CMS grid 

● Reduced size to O(TB)
● Stored @ FNAL 
● Contains only 

interesting quantities 
Requires environment with

● Powerful and fast 
python tools

● Ability to scale out 
● Want to be able to 

process millions of 
events per minute 



Typical workflow

10

Central CMS 
Data/MC 
datasets

Custom c++ code
Running on CMS grid

Custom “skimmed” 
dataset with only 

needed information

Local processing 
(python)

Histograms

● 10s of TB
● In distributed storage 

across the world 

Requires environment with
● Correctly-configured 

c++ workspace
● Ability to submit to 

CMS grid 

● Reduced size to O(TB)
● Stored @ FNAL 
● Contains only 

interesting quantities 
Requires environment with

● Powerful and fast 
python tools

● Ability to scale out 
● Want to be able to 

process millions of 
events per minute 

● Stored @ 
subMIT

● Ready for 
making plots, 
conclusions



Typical workflow

11

Central CMS 
Data/MC 
datasets

Custom c++ code
Running on CMS grid

Custom “skimmed” 
dataset with only 

needed information

Local processing 
(python)

Histograms

● 10s of TB
● In distributed storage 

across the world 

Requires environment with
● Correctly-configured 

c++ workspace
● Ability to submit to 

CMS grid 

● Reduced size to O(TB)
● Stored @ FNAL 
● Contains only 

interesting quantities 
Requires environment with

● Powerful and fast 
python tools

● Ability to scale out 
● Want to be able to 

process millions of 
events per minute 

● Stored @ 
subMIT

● Ready for 
making plots, 
conclusions

Need at MIT:
● CMS development environments 
● Access to CMS grid 



Typical workflow

12

Central CMS 
Data/MC 
datasets

Custom c++ code
Running on CMS grid

Custom “skimmed” 
dataset with only 

needed information

Local processing 
(python)

Histograms

● 10s of TB
● In distributed storage 

across the world 

Requires environment with
● Correctly-configured 

c++ workspace
● Ability to submit to 

CMS grid 

● Reduced size to O(TB)
● Stored @ FNAL 
● Contains only 

interesting quantities 
Requires environment with

● Powerful and fast 
python tools

● Ability to scale out 
● Want to be able to 

process millions of 
events per minute 

● Stored @ 
subMIT

● Ready for 
making plots, 
conclusions

Need at MIT:
● CMS development environments 
● Access to CMS grid 
● Access to Fermilab storage resources



Typical workflow

13

Central CMS 
Data/MC 
datasets

Custom c++ code
Running on CMS grid

Custom “skimmed” 
dataset with only 

needed information

Local processing 
(python)

Histograms

● 10s of TB
● In distributed storage 

across the world 

Requires environment with
● Correctly-configured 

c++ workspace
● Ability to submit to 

CMS grid 

● Reduced size to O(TB)
● Stored @ FNAL 
● Contains only 

interesting quantities 
Requires environment with

● Powerful and fast 
python tools

● Ability to scale out 
● Want to be able to 

process millions of 
events per minute 

● Stored @ 
subMIT

● Ready for 
making plots, 
conclusions

Need at MIT:
● CMS development environments 
● Access to CMS grid 
● Access to Fermilab storage resources
● Ability to scale python analysis tools across many CPUs 
● Fast networking 



Typical workflow

14

Central CMS 
Data/MC 
datasets

Custom c++ code
Running on CMS grid

Custom “skimmed” 
dataset with only 

needed information

Local processing 
(python)

Histograms

● 10s of TB
● In distributed storage 

across the world 

Requires environment with
● Correctly-configured 

c++ workspace
● Ability to submit to 

CMS grid 

● Reduced size to O(TB)
● Stored @ FNAL 
● Contains only 

interesting quantities 
Requires environment with

● Powerful and fast 
python tools

● Ability to scale out 
● Want to be able to 

process millions of 
events per minute 

● Stored @ 
subMIT

● Ready for 
making plots, 
conclusions

Need at MIT:
● CMS development environments 
● Access to CMS grid 
● Access to Fermilab storage resources
● Ability to scale python analysis tools across many CPUs 
● Fast networking
● Fast local storage resources 



CMS computing 
environment and 
grid submission

15



CMS computing environment 

● Development happens in special “CMS-software” (cmssw) environment 
● Critical that development environment match deployment on CMS grid
● Use cms-produced singularity images
● Available on subMIT via cvmfs 

16

Enterprise linux 8 
development 
environment 

Centos 7 
development 
environment In .bash_aliases



Submission to CMS grid resources

● CERN has huge amounts of cloud 
computing resources for analysis

● CMS has central tool for staging production 
to grid, called CRAB: (CMS Remote 
Analysis Builder)

● Allows you to send jobs to CMS grid
○ Automatically splits up dataset into individual jobs
○ Scales jobs out to all available resources
○ Automagically handles retries for common errors

17



Crab from subMIT

● subMIT team has been very helpful 
and responsive in getting crab to 
work at subMIT 

● Can efficiently run across whole 
datasets

● Allows rapid development cycles 

18



Distributed 
processing 
on slurm

19



Local analysis on subMIT 

● CMS grid processing not good enough for rapid development
○ Takes O(1 day) 
○ Just reduces data size, doesn’t compute summaries 

● Want to be able to run analysis quickly (~minutes)
● Preferably want to be able to do so in python (not c++)
● The problem:

○ Want to fill histograms in python
○ Want to be able to scale analysis to entire dataset (hundreds of large data files) 
○ Want whole chain to run in O(minutes) 

20



Efficiently filling histograms in python

● Industry standard histograms library is 
boost.histogram

● Problem: it’s in c++, and I hate c++
● Enter scikit-hep hist library

○ Python wrapper for boost.histogram
○ Can define (at runtime) arbitrary histograms 
○ Efficient threaded fills

21

https://www.boost.org/doc/libs/1_84_0/libs/histogram/doc/html/index.html
https://hist.readthedocs.io/en/latest/?badge=latest


Scaling processing to entire dataset: coffea 

coffea: magical package that handles:

● Splitting your dataset into discrete jobs
● Scaling out your analysis processing
● Combining resulting histograms into one result

22

https://coffeateam.github.io/coffea/


Scaling processing to entire dataset: coffea 

coffea: magical package that handles:

● Splitting your dataset into discrete jobs
● Scaling out your analysis processing
● Combining resulting histograms into one result

How it works:

1. Define “processor” that fills analysis histograms

23

https://coffeateam.github.io/coffea/


Scaling processing to entire dataset: coffea 

coffea: magical package that handles:

● Splitting your dataset into discrete jobs
● Scaling out your analysis processing
● Combining resulting histograms into one result

How it works:

1. Define “processor” that fills analysis histograms
2. Tell coffea how to scale out 

(eg iterative execution, multiprocessing, etc) 

24

https://coffeateam.github.io/coffea/


Scaling processing to entire dataset: coffea 

coffea: magical package that handles:

● Splitting your dataset into discrete jobs
● Scaling out your analysis processing
● Combining resulting histograms into one result

How it works:

1. Define “processor” that fills analysis histograms
2. Tell coffea how to scale out 

(eg iterative execution, multiprocessing, etc) 
3. Profit 

25

https://coffeateam.github.io/coffea/


Efficient distributed computing: dask 

● Final piece is to scale out across submit slurm cluster
● Want to be able to process ~100 million events in <10 minutes
● Solution: dask-jobqueue

○ Lets you point python at the whole slurm cluster
○ Automatically load balances by starting and killing slurm jobs as needed 

● Integration with coffea is easy

26

Would be nice if this also worked 
with HTCondor + MIT Tier2

https://jobqueue.dask.org/en/latest/generated/dask_jobqueue.SLURMCluster.html


Conclusions

● Big thanks to subMIT team for
○ Being very responsive
○ Helping me troubleshoot
○ Helping support tools such as CRAB 

● subMIT provides useful gateway to global compute resources
● Dask, coffea provide access to scale python analysis across slurm
● It’s really fun to fully load a few hundred slurm jobs all at once 

27


