CMS analysis @subMIT
With distributed computing
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From Phil Harris group
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. . I %CPU COMMAND
° |\/|y current focus is precision 853624 srothnan 0 2444132 562824 114348 S 103.3 0.0  0:
853629 srothman 0 2210112 551460 114036 9 0.0
853633 srothman 0 2174712 517960 113632 .9 0.0
measurement of Strong force 853497 srothman 0 2436304 547868 112460 6 0.0
853527 srothman 0 2208340 546480 112412 6 0.0
o New observables 853695 srothnan 0 2188856 530800 114692 6 0.0
: 853615 srothman 0 2210284 553148 113652 3 0.0
© Strong theory-experlment Correspondence 853653 srothman 0 2213692 561100 112748 .3 0.0
. . . 4 853665 srothman 0 2213700 556148 113892 3 0.0
e Fortoday, interesting point is 353653 crothnan 20 0 2441828 570408 113468 S 101.6 0.0
; ) 853671 srothman 0 2215596 553720 113968 3 0.0
853596 srothman 0 2213040 554180 112932 .0 0.0
CompUtatlonaI reqUIrementS 853611 srothman 0 2215496 555356 113780 .0 0.0
853623 srothman 0 2219612 554552 113584 0 0.0
o Need access to CMS global resources 853677 srothman 0 2223816 559496 113380 3 0.0
i 853657 srothman 0 2211808 554016 113760 7 0.0
© Need SUbStantlal Iocal resources (and a 853642 srothman 0 1576484 514304 113840 .0 0.0
| 853641 srothman 0 2450916 553604 114052 -9 0.0
way to make use of them!) 853587 srothman 0 2438812 550628 113692 6 0.0
o  Will talk some more about this 853661 srothman 0 1604188 539536 114108 .6 0.0
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CMS computing environment

Development happens in special “CMS-software” (cmssw) environment
Critical that development environment match deployment on CMS grid
Use cms-produced singularity images

Available on subMIT via cvmfs

Enterprise linux 8
development
environment

alias cmssw-el8='cmssource; APPTAINER BIND="/home/submit,/work/submit,
/data/submit, /scratch/submit, /cvmfs" cmssw-el8 --command-to-run bash'

alias cmssw-cc7="cmssource; APPTAINER BIND="/home/submit, /work/submit,
Centos 7 —— /data/submit,/scratch/submit, /cvmfs" cmssw-cc7 --command-to-run bash'

development
environment In .bash_aliases
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Submission to CMS grid resources

e CERN has huge amounts of cloud Tier-2 sites
. . - (about 140)
computing resources for analysis '

Tier-1 sites
10 Gbit/s links

e CMS has central tool for staging production
‘ -2 r'%—

to grid, called CRAB: (CMS Remote
Analysis Builder)
e Allows you to send jobs to CMS grid

o Automatically splits up dataset into individual jobs
o Scales jobs out to all available resources
o Automagically handles retries for common errors




Crab from subMIT

e subMIT team has been very helpful
and responsive in getting crab to
work at subMIT

e Can efficiently run across whole
datasets

e Allows rapid development cycles

Status on the CRAB server: SUBMITTED

Task URL to use for HELP: https://cmsweb.cern.ch/crabserver/ui/task/24
0131 170925 rothman_crab_srothman_Jan31 2024 pythia_highstats_ fixed fixed
| 2018 DYJetsTolL

Dashboard monitoring URL: https://monit-grafana.cern.ch/d/cmsTMDetail/
cms-task-monitoring-task-view?orgId=11&var-user=srothman&var-task=240131_170
925%3Asrothman_crab_srothman_Jan31_2024 pythia_highstats_fixed_fixed 2018 DY
JetsToLL&from=1706717365000&to=now

Status on the scheduler: FAILED

Jobs status: failed 4.1% ( 38/922)
finished 95.9% (884/922)

No publication information (publication has been disabled in the CRAB config
uration file)

Error Summary: (use crab status --verboseErrors for details about the errors

)

29 jobs failed with exit code 8021

4 jobs failed with exit code 8002
3 jobs failed with exit code 8028
1 jobs failed with exit code 8006

Could not find exit code details for 1 jobs.

Summary of run jobs:

* Memory: 1357MB min, 3099MB max, 2679MB ave

* Runtime: 0:08:52 min, 3:26:25 max, 1:29:36 ave
* CPU eff: 23% min, 95% max, 52% ave

* Waste: 213:16:40 (13% of total)
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Distributed
processing
on slurm



Local analysis on subMIT

e CMS grid processing not good enough for rapid development
o Takes O(1 day)
o Just reduces data size, doesn’'t compute summaries

e \Want to be able to run analysis quickly (~minutes)

e Preferably want to be able to do so in python (not c++)

e The problem:
o  Want to fill histograms in python
o Want to be able to scale analysis to entire dataset (hundreds of large data files)
o  Want whole chain to run in O(minutes)
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Efficiently filling histograms in python

e Industry standard histograms library is
boost.histogram

e Problem:it'sin c++, and | hate c++
e Enter scikit-hep hist library

(@)

(@)

(@)

Python wrapper for boost.histogram
Can define (at runtime) arbitrary histograms
Efficient threaded fills

histogram = Hist(
Variable(ptbins, name='pt', label = 'Jet $p_{T}$ [GeV]')
Integer(0, nDR, name='dRbin', label = '$\Delta RS bin',
overflow=False, underflow=False),

Variable(PUbins, name='nPU', label = 'Number of PU vertices',

overflow=True, underflow=False),
storage=Double()
)

histogram.fill(
pt squash(pt[mask2]),
drRbin squash(drRbin[mask2]),
nPU
weight
)

squash(nPU[mask2]),
squash(vals[mask2])
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https://www.boost.org/doc/libs/1_84_0/libs/histogram/doc/html/index.html
https://hist.readthedocs.io/en/latest/?badge=latest

Scaling processing to entire dataset: coffea

coffea: magical package that handles:

e Splitting your dataset into discrete jobs
e Scaling out your analysis processing
e Combining resulting histograms into one result
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https://coffeateam.github.io/coffea/

Scaling processing to entire dataset: coffea

COﬁea: magical paCkage that handles: class EECProcessor (processor Processor ABC):

def __init__(self, config, statsplit=False):

self.config = config
self.statsplit = statsplit

e Splitting your dataset into discrete jobs
e Scaling out your analysis processing
e Combining resulting histograms into one result

How it works:

1. Define “processor” that fills analysis histograms
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https://coffeateam.github.io/coffea/

Scaling processing to entire dataset: coffea

COﬁea: magical paCkage that handles: class EECProcessor(processor.ProcessorABC):

def __init__(self, config, statsplit=False):
self.config = config
self.statsplit = statsplit

e Splitting your dataset into discrete jobs
e Scaling out your analysis processing
e Combining resulting histograms into one result T = R

executor=FuturesExecutor(workers=4) if args.local_futures else
IterativeExecutor(),

HOW it WorkS: schema=NanoAODSchema

)

1. Define “processor” that fills analysis histograms
2. Tell coffea how to scale out
(eg iterative execution, multiprocessing, etc)
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https://coffeateam.github.io/coffea/

Scaling processing to entire dataset: coffea

COffea: magical paCkage that handles: class EECProcessor(processor.ProcessorABC):

def __init__(self, config, statsplit=False):
self.config = config
self.statsplit = statsplit

e Splitting your dataset into discrete jobs
e Scaling out your analysis processing
e Combining resulting histograms into one result T = R

executor=FuturesExecutor(workers=4) if args.local_futures else
IterativeExecutor(),

How it works:

schema=NanoAODSchema

1. Define “processor” that fills analysis histograms
2. Tell coffea how to scale out

(eg iterative execution, multiprocessing, etc)
3. Profit
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https://coffeateam.github.io/coffea/

Efficient distributed computing: dask Would be nice if this also worked

with HTCondor + MIT Tier2

e Final piece is to scale out across submit slurm cluster
e \Want to be able to process ~100 million events in <10 minutes

e Solution: dask-jobqueue
o Lets you point python at the whole slurm cluster
o Automatically load balances by starting and killing slurm jobs as needed

e Integration with coffea is eas

cluster = SLURMCluster(queue = 'submit-alma9',

cores=1,

processes=1,

memory="4GB"',

walltime='01:00:00",

log _directory=1log directory)
cluster.adapt(minimum_jobs = minjobs, maximum_jobs = maxjobs)

client = Client(cluster)

runner = Runner(
executor=DaskExecutor(client=client, status=True),

schema=NanoAODSchema


https://jobqueue.dask.org/en/latest/generated/dask_jobqueue.SLURMCluster.html

Conclusions

e Big thanks to subMIT team for
o Being very responsive
o Helping me troubleshoot
o Helping support tools such as CRAB

e subMIT provides useful gateway to global compute resources
e Dask, coffea provide access to scale python analysis across slurm
e |[t's really fun to fully load a few hundred slurm jobs all at once
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