CMS analysis @subMIT
With distributed computing

Simon Rothman,
From Phil Harris group

Overview

e We are members of CMS experiment
o ~ 2-3k collaborators across world
o Petabytes of data

Overview

e We are members of CMS experiment
o ~ 2-3k collaborators across world w
o Petabytes of data L
o Free trips to Europe

Overview

e We are members of CMS experiment

o ~ 2-3k collaborators across world
o Petabytes of data
o Free trips to Europe

e My current focus is precision : b | Charged-Hadron EEC |
measurement of strong force

107" ¢ |

Q - 5
i New observables % - Free Hadron Transition Quarks/Gluons]
o Strong theory-experiment correspondence = L - "

g 2L & .

5 107 a]

< e]

= i &

S L 'F}

Z 105 L I CMS 2011 Open Data J

: ,l.-l-'l' AKS Jets, [< 1.9 _
f -l-']' it €[500,550] Gev]

rl-'l. CHS, prF¢ > 1 Gev }
10 N .
107 102 10°! 10°
Ry

100 T T
~} | Charged-Hadron EEC
] o 10 E]
Eﬂl Free Hadron = Transition Quarks/Gluons
Overview T e
é ++ -
Zf e
e \We are members of CMS experiment i S
T
107) - 0
o ~ 2-3k collaborators across world 10° S 10

o Petabytes of data
o Free trips to Europe

. . I %CPU COMMAND
° |\/|y current focus is precision 853624 srothnan 0 2444132 562824 114348 S 103.3 0.0 0:
853629 srothman 0 2210112 551460 114036 9 0.0
853633 srothman 0 2174712 517960 113632 .9 0.0
measurement of Strong force 853497 srothman 0 2436304 547868 112460 6 0.0
853527 srothman 0 2208340 546480 112412 6 0.0
o New observables 853695 srothnan 0 2188856 530800 114692 6 0.0
: 853615 srothman 0 2210284 553148 113652 3 0.0
© Strong theory-experlment Correspondence 853653 srothman 0 2213692 561100 112748 .3 0.0
. . . 4 853665 srothman 0 2213700 556148 113892 3 0.0
e Fortoday, interesting point is 353653 crothnan 20 0 2441828 570408 113468 S 101.6 0.0
;) 853671 srothman 0 2215596 553720 113968 3 0.0
853596 srothman 0 2213040 554180 112932 .0 0.0
CompUtatlonaI reqUIrementS 853611 srothman 0 2215496 555356 113780 .0 0.0
853623 srothman 0 2219612 554552 113584 0 0.0
o Need access to CMS global resources 853677 srothman 0 2223816 559496 113380 3 0.0
i 853657 srothman 0 2211808 554016 113760 7 0.0
© Need SUbStantlal Iocal resources (and a 853642 srothman 0 1576484 514304 113840 .0 0.0
| 853641 srothman 0 2450916 553604 114052 -9 0.0
way to make use of them!) 853587 srothman 0 2438812 550628 113692 6 0.0
o Will talk some more about this 853661 srothman 0 1604188 539536 114108 .6 0.0

Typical workflow

Central CMS
Data/MC
datasets

10s of TB
In distributed storage
across the world

Typical workflow

Central CMS
Data/MC
datasets

Custom c++ code
Running on CMS grid

10s of TB

In distributed storage
across the world

Requires environment with

e Correctly-configured
c++ workspace

e Ability to submit to
CMS grid

Typical workflow

Central CMS
Data/MC
datasets

Custom c++ code
Running on CMS grid

10s of TB

In distributed storage
across the world

Requires environment with

e Correctly-configured
c++ workspace

e Ability to submit to
CMS grid

Custom “skimmed”
dataset with only
needed information

Reduced size to O(TB)
Stored @ FNAL
Contains only
interesting quantities

Typical workflow

Central CMS
Data/MC
datasets

Custom c++ code
Running on CMS grid

10s of TB

In distributed storage
across the world

Requires environment with

e Correctly-configured
c++ workspace

e Ability to submit to
CMS grid

Custom “skimmed”
dataset with only
needed information

Local processing
(python)

Reduced size to O(TB)

Stored @ FNAL
Contains only

interesting quantities

Requires environment with
e Powerful and fast

python tools

e Ability to scale out
e Want to be able to

process millions of
events per minute

Typical workflow

Central CMS
Data/MC
datasets

Custom c++ code
Running on CMS grid

10s of TB

In distributed storage
across the world

Requires environment with

e Correctly-configured
c++ workspace

e Ability to submit to
CMS grid

Custom “skimmed”
dataset with only
needed information

Reduced size to O(TB)
Stored @ FNAL
Contains only
interesting quantities

Local processing
(python)

Requires environment with
e Powerful and fast
python tools
e Ability to scale out
e \Want to be able to
process millions of
events per minute

Histograms

Stored @
subMIT
Ready for
making plots,
conclusions

10

Typical workflow

Central CMS
Data/MC
datasets

Custom c++ code
Running on CMS grid

10s of TB

In distributed storage

across the world

Need at MIT:
CMS development environments

Requires environment with
e Correctly-configured
c++ workspace
e Ability to submit to
CMS grid

Access to CMS grid

Custom “skimmed”
dataset with only
needed information

Reduced size to O(TB)
Stored @ FNAL
Contains only
interesting quantities

Local processing
(python)

Requires environment with
e Powerful and fast
python tools
e Ability to scale out
e \Want to be able to
process millions of
events per minute

Histograms

Stored @
subMIT
Ready for
making plots,
conclusions

11

Typical workflow

Central CMS
Data/MC
datasets

Custom c++ code
Running on CMS grid

10s of TB

In distributed storage

across the world

Need at MIT:
CMS development environments

Access to CMS grid

Access to Fermilab storage resources

Custom “skimmed”
dataset with only
needed information

Stored @ FNAL

Local processing
(python)

Requires environment with
e Correctly-configured
c++ workspace
e Ability to submit to
CMS grid

Contamns only
interesting quantities

Requires environment with
e Powerful and fast
python tools
e Ability to scale out
e \Want to be able to
process millions of
events per minute

Histograms

Stored @
subMIT
Ready for
making plots,
conclusions

12

Typical workflow

Central CMS
Data/MC
datasets

Custom c++ code

Running on CMS grid

10s of TB

In distributed storage

across the world

Need at MIT:
CMS development environments

Access to CMS grid

Access to Fermilab storage resources
Ability to scale python analysis tools across many CPUs

Fast networking

Custom “skimmed”
dataset with only
needed information

Stored @ FNAL

Local processing

(python)

Requires environment with

Correctly-configured
c++ workspace
Ability to submit to
CMS grid

Contamns only
interesting quantities

Histograms

Requires environment with

Powerful and fast
python tools
Ability to scale out
Want to be able to
process millions of
events per minute

Stored @
subMIT
Ready for
making plots,
conclusions

13

Typical workflow

Central CMS
Data/MC
datasets

Need at MIT:
CMS development environments

Custom c++ code
Running on CMS grid

10s of TB

In distributed storage

across the world

Access to CMS grid

Access to Fermilab storage resources
Ability to scale python analysis tools across many CPUs

Fast networking

Fast local storage resources

Custom “skimmed”
dataset with only
needed information

Stored @ FNAL

Local processing
(python)

Histograms

Requires environment with
e Correctly-configured
c++ workspace
e Ability to submit to
CMS grid

Contamns only
interesting quantities

Stored @
subMIT

Requires environment with
e Powerful and fast
python tools
e Ability to scale out
e Want to be able to
process millions of
events per minute

Ready for
making plots,
conclusions

14

CMS computing
environment and
grid submission

CMS computing environment

Development happens in special “CMS-software” (cmssw) environment
Critical that development environment match deployment on CMS grid
Use cms-produced singularity images

Available on subMIT via cvmfs

Enterprise linux 8
development
environment

alias cmssw-el8='cmssource; APPTAINER BIND="/home/submit,/work/submit,
/data/submit, /scratch/submit, /cvmfs" cmssw-el8 --command-to-run bash'

alias cmssw-cc7="cmssource; APPTAINER BIND="/home/submit, /work/submit,
Centos 7 —— /data/submit,/scratch/submit, /cvmfs" cmssw-cc7 --command-to-run bash'

development
environment In .bash_aliases

16

Submission to CMS grid resources

e CERN has huge amounts of cloud Tier-2 sites
. . - (about 140)
computing resources for analysis '

Tier-1 sites
10 Gbit/s links

e CMS has central tool for staging production
‘ -2 r'%—

to grid, called CRAB: (CMS Remote
Analysis Builder)
e Allows you to send jobs to CMS grid

o Automatically splits up dataset into individual jobs
o Scales jobs out to all available resources
o Automagically handles retries for common errors

Crab from subMIT

e subMIT team has been very helpful
and responsive in getting crab to
work at subMIT

e Can efficiently run across whole
datasets

e Allows rapid development cycles

Status on the CRAB server: SUBMITTED

Task URL to use for HELP: https://cmsweb.cern.ch/crabserver/ui/task/24
0131 170925 rothman_crab_srothman_Jan31 2024 pythia_highstats_ fixed fixed
| 2018 DYJetsTolL

Dashboard monitoring URL: https://monit-grafana.cern.ch/d/cmsTMDetail/
cms-task-monitoring-task-view?orgId=11&var-user=srothman&var-task=240131_170
925%3Asrothman_crab_srothman_Jan31_2024 pythia_highstats_fixed_fixed 2018 DY
JetsToLL&from=1706717365000&to=now

Status on the scheduler: FAILED

Jobs status: failed 4.1% (38/922)
finished 95.9% (884/922)

No publication information (publication has been disabled in the CRAB config
uration file)

Error Summary: (use crab status --verboseErrors for details about the errors

)

29 jobs failed with exit code 8021

4 jobs failed with exit code 8002
3 jobs failed with exit code 8028
1 jobs failed with exit code 8006

Could not find exit code details for 1 jobs.

Summary of run jobs:

* Memory: 1357MB min, 3099MB max, 2679MB ave

* Runtime: 0:08:52 min, 3:26:25 max, 1:29:36 ave
* CPU eff: 23% min, 95% max, 52% ave

* Waste: 213:16:40 (13% of total)

18

Distributed
processing
on slurm

Local analysis on subMIT

e CMS grid processing not good enough for rapid development
o Takes O(1 day)
o Just reduces data size, doesn’'t compute summaries

e \Want to be able to run analysis quickly (~minutes)

e Preferably want to be able to do so in python (not c++)

e The problem:
o Want to fill histograms in python
o Want to be able to scale analysis to entire dataset (hundreds of large data files)
o Want whole chain to run in O(minutes)

20

Efficiently filling histograms in python

e Industry standard histograms library is
boost.histogram

e Problem:it'sin c++, and | hate c++
e Enter scikit-hep hist library

(@)

(@)

(@)

Python wrapper for boost.histogram
Can define (at runtime) arbitrary histograms
Efficient threaded fills

histogram = Hist(
Variable(ptbins, name='pt', label = 'Jet p_{T} [GeV]')
Integer(0, nDR, name='dRbin', label = '$\Delta RS bin',
overflow=False, underflow=False),

Variable(PUbins, name='nPU', label = 'Number of PU vertices',

overflow=True, underflow=False),
storage=Double()
)

histogram.fill(
pt squash(pt[mask2]),
drRbin squash(drRbin[mask2]),
nPU
weight
)

squash(nPU[mask2]),
squash(vals[mask2])

21

https://www.boost.org/doc/libs/1_84_0/libs/histogram/doc/html/index.html
https://hist.readthedocs.io/en/latest/?badge=latest

Scaling processing to entire dataset: coffea

coffea: magical package that handles:

e Splitting your dataset into discrete jobs
e Scaling out your analysis processing
e Combining resulting histograms into one result

22

https://coffeateam.github.io/coffea/

Scaling processing to entire dataset: coffea

COﬁea: magical paCkage that handles: class EECProcessor (processor Processor ABC):

def __init__(self, config, statsplit=False):

self.config = config
self.statsplit = statsplit

e Splitting your dataset into discrete jobs
e Scaling out your analysis processing
e Combining resulting histograms into one result

How it works:

1. Define “processor” that fills analysis histograms

23

https://coffeateam.github.io/coffea/

Scaling processing to entire dataset: coffea

COﬁea: magical paCkage that handles: class EECProcessor(processor.ProcessorABC):

def __init__(self, config, statsplit=False):
self.config = config
self.statsplit = statsplit

e Splitting your dataset into discrete jobs
e Scaling out your analysis processing
e Combining resulting histograms into one result T = R

executor=FuturesExecutor(workers=4) if args.local_futures else
IterativeExecutor(),

HOW it WorkS: schema=NanoAODSchema

)

1. Define “processor” that fills analysis histograms
2. Tell coffea how to scale out
(eg iterative execution, multiprocessing, etc)

24

https://coffeateam.github.io/coffea/

Scaling processing to entire dataset: coffea

COffea: magical paCkage that handles: class EECProcessor(processor.ProcessorABC):

def __init__(self, config, statsplit=False):
self.config = config
self.statsplit = statsplit

e Splitting your dataset into discrete jobs
e Scaling out your analysis processing
e Combining resulting histograms into one result T = R

executor=FuturesExecutor(workers=4) if args.local_futures else
IterativeExecutor(),

How it works:

schema=NanoAODSchema

1. Define “processor” that fills analysis histograms
2. Tell coffea how to scale out

(eg iterative execution, multiprocessing, etc)
3. Profit

25

https://coffeateam.github.io/coffea/

Efficient distributed computing: dask Would be nice if this also worked

with HTCondor + MIT Tier2

e Final piece is to scale out across submit slurm cluster
e \Want to be able to process ~100 million events in <10 minutes

e Solution: dask-jobqueue
o Lets you point python at the whole slurm cluster
o Automatically load balances by starting and killing slurm jobs as needed

e Integration with coffea is eas

cluster = SLURMCluster(queue = 'submit-alma9',

cores=1,

processes=1,

memory="4GB"',

walltime='01:00:00",

log _directory=1log directory)
cluster.adapt(minimum_jobs = minjobs, maximum_jobs = maxjobs)

client = Client(cluster)

runner = Runner(
executor=DaskExecutor(client=client, status=True),

schema=NanoAODSchema

https://jobqueue.dask.org/en/latest/generated/dask_jobqueue.SLURMCluster.html

Conclusions

e Big thanks to subMIT team for
o Being very responsive
o Helping me troubleshoot
o Helping support tools such as CRAB

e subMIT provides useful gateway to global compute resources
e Dask, coffea provide access to scale python analysis across slurm
e |[t's really fun to fully load a few hundred slurm jobs all at once

27

