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1e14 synapses

4e3 MJ/year (human)

2e11 parameters

4e6 MJ (training)

Luccioni et al. 2022
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What computational role do dendrites serve?
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A minimal but biologically-realistic model of neural spiking

Implemented in Julia!



A minimal but biologically-realistic model of neural spiking
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Our model

- 1.0 s simulation time
- Euler with 0.1 ms time step
- Neglecting recurrence for fair comparison
- Dendrify timings include “build time” Pagkalos et al., 2023
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Recap

1. Each compartment is comprised of 3 coupled ODEs
2. A network is made up of N of these compartments connected by 
synaptic weight matrices
3. We simulate network activity for 100 – 1000 ms in the forward solve
4. If training, we perform a reverse solve by integrating backwards in 
time and interpolating in our forward solve variables
5. Compute the gradients
6. Repeat >10,000 times
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Computational needs

- Training is bottlenecked by serial steps with limited opportunities for 
parallelization within ODE solves
- Individual ODE solves are CPU-limited, but not that expensive

- Approach: train many networks simultaneously
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subMIT usage

- Will typically submit 100 – 300 batch requests at a time
- 1 – 3 cores per job
- 9 – 12 hour runtime (with checkpointing)

- subMIT’s cores are relatively fast, so I use it on my most expensive 
networks



Questions? Feedback?





A minimal but biologically-realistic model of neural spiking



Given an instantaneous loss L, we seek to minimize a cost function C such that

We can perform a Legendre transformation on L to obtain a “Hamiltonian” that 
introduces new adjoint variables p

where p are defined by
 

The parameter gradients of the initial cost function can then be computed as

Training via adjoint sensitivity analysis
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