Training spiking neural networks via adjoint sensitivity analysis

Quique Toloza Supervisor: Mark Harnett

subMIT IAP Workshop 2024 February 2nd, 2024 Big idea: The brain is extraordinarily effective on a modest energy budget

Big idea: The brain is extraordinarily effective on a modest energy budget

1e¹⁴ synapses

4e³ MJ/year (human)

Luccioni et al. 2022

Big idea: The brain is extraordinarily effective on a modest energy budget

1e¹⁴ synapses

2e¹¹ parameters

4e³ MJ/year (human)

4e⁶ MJ (training)

Luccioni et al. 2022

Mark Harnett

Vardalaki et al. 2022

Vardalaki et al. 2022

Mark Harnett

Why do we have dendrites?

Why do we have dendrites?

What computational role do dendrites serve?

without assumptions on connectivity

- without assumptions on connectivity
- does it change from task to task?

- without assumptions on connectivity
- does it change from task to task?
- does it change from model to model?

- without assumptions on connectivity
- does it change from task to task?
- does it change from model to model?

- 1.0 s simulation time
- Euler with 0.1 ms time step
- Neglecting recurrence for fair comparison
- Dendrify timings include "build time"

Pagkalos et al., 2023

Inputs

Inputs Forward solve

1. Each compartment is comprised of 3 coupled ODEs

- 1. Each compartment is comprised of 3 coupled ODEs
- 2. A network is made up of *N* of these compartments connected by synaptic weight matrices

- 1. Each compartment is comprised of 3 coupled ODEs
- 2. A network is made up of *N* of these compartments connected by synaptic weight matrices
- 3. We simulate network activity for 100 1000 ms in the forward solve

- 1. Each compartment is comprised of 3 coupled ODEs
- 2. A network is made up of *N* of these compartments connected by synaptic weight matrices
- 3. We simulate network activity for 100 1000 ms in the forward solve
- 4. If training, we perform a reverse solve by integrating backwards in time and interpolating in our forward solve variables

1. Each compartment is comprised of 3 coupled ODEs

2. A network is made up of *N* of these compartments connected by synaptic weight matrices

- 3. We simulate network activity for 100 1000 ms in the forward solve
- 4. If training, we perform a reverse solve by integrating backwards in time and interpolating in our forward solve variables
- 5. Compute the gradients

1. Each compartment is comprised of 3 coupled ODEs

2. A network is made up of *N* of these compartments connected by synaptic weight matrices

- 3. We simulate network activity for 100 1000 ms in the forward solve
- 4. If training, we perform a reverse solve by integrating backwards in time and interpolating in our forward solve variables
- 5. Compute the gradients
- 6. Repeat >10,000 times

- Training is bottlenecked by serial steps with limited opportunities for parallelization within ODE solves

- Training is bottlenecked by serial steps with limited opportunities for parallelization within ODE solves

- Individual ODE solves are CPU-limited, but not that expensive

- Training is bottlenecked by serial steps with limited opportunities for parallelization within ODE solves

- Individual ODE solves are CPU-limited, but not that expensive

- Approach: train many networks simultaneously

subMIT usage

- Will typically submit 100 300 batch requests at a time
- 1 3 cores per job
- -9-12 hour runtime (with checkpointing)

subMIT usage

- Will typically submit 100 300 batch requests at a time
- 1 3 cores per job
- 9 12 hour runtime (with checkpointing)

- subMIT's cores are relatively fast, so I use it on my most expensive networks

Questions? Feedback?

$$\dot{v}_i = (a_i(v_i - b_i)^2 + c_i)(v_i - 1) - j_i u_i(v_i - l_i) - k_i w_i(v_i - m_i) + \sigma_{ji}(v_j - \mu_j) + J_i$$

$$\tau_{u_i} \dot{u}_i = d_i (v_i - e_i)^4 + f_i - u_i$$

$$\tau_{w_i} \dot{w}_i = g_i (v_i - h_i)^2 + i_i - w_i$$

 $[i, j \neq i] \in [\text{soma, dendrite}]$

Given an instantaneous loss L, we seek to minimize a cost function C such that

$$\delta C = \delta \int_{t_1}^{t_2} dt \, L(t, \boldsymbol{x}, \dot{\boldsymbol{x}}, \boldsymbol{\theta}) = 0$$

We can perform a Legendre transformation on L to obtain a "Hamiltonian" that introduces new adjoint variables p

$$H(t, \boldsymbol{x}, \boldsymbol{p}, \boldsymbol{\theta}) = \dot{\boldsymbol{x}} \cdot \boldsymbol{p} + L(t, \boldsymbol{x}, \dot{\boldsymbol{x}}, \boldsymbol{\theta})$$

where *p* are defined by

$$\dot{p} = -rac{\partial H}{\partial x}$$

~ ---

The parameter gradients of the initial cost function can then be computed as

$$\frac{\partial C}{\partial \boldsymbol{\theta}} = \int_{t_1}^{t_2} dt \, \frac{\partial H}{\partial \boldsymbol{\theta}}$$