Gravitational waves (GWs) at frequencies higher than the LIGO band can bring us completely new information about the universe. Besides being the most-interesting frequency region for looking at cosmological phenomena, they can also convey signatures of ultralight bosons through blackhole superradiance and light primordial blackholes (PBHs). I will introduce a new global initiative to study GW...
Asteroid-mass primordial black holes (PBHs) can explain the observed dark matter abundance while being consistent with the current indirect detection constraints. These PBHs can produce gamma-ray signals from Hawking radiation that are within the sensitivity of future measurements by the AMEGO and e-ASTROGAM experiments. PBHs which give rise to such observable gamma-ray signals have a cosmic...
Phase transitions are driven by thermal loop fluctuations, which modify background fields at leading order. This breaks the loop expansion and leads to large theoretical uncertainties in typical calculations, especially for gravitational wave predictions. I will give an overview of our present understanding of these uncertainties, and of the tools that have been developed to overcome them....
The symmetry breaking of grand unified gauge groups in the early universe often leaves behind relic topological defects such as cosmic strings, domain walls, or monopoles. For some symmetry breaking chains, hybrid defects can form where cosmic strings attach to domain walls or monopoles attach to strings. In general, such hybrid defects are unstable and can leave behind unique gravitational...
Stochastic gravitational wave backgrounds are expected to be anisotropic. While such anisotropies can be of astrophysical origin, a cosmological component of such anisotropies can carry rich information about primordial perturbations. Focusing on the case of a cosmological phase transition, I will talk about how such anisotropies can give us a powerful probe of primordial non-Gaussianities,...
We explore the possibility that dark matter is a pair of SU(2)_L doublets and propose a novel mechanism of dark matter production that proceeds through the confinement of the weak sector of the Standard Model. This phase of confinement causes the Standard Model doublets and dark matter to confine into pion-like objects. Before the weak sector deconfines, the dark pions freezeout and generate a...
The nanohertz-frequency band of gravitational waves should be awash with signals from supermassive black-hole binaries, as well as cosmological signatures of phase transitions, cosmic strings, and other relics of the early Universe. Pulsar-timing arrays (PTAs) like the North American Nanohertz Observatory for Gravitational waves (NANOGrav) and the International Pulsar Timing Array are poised...
Gravitational waves from phase transitions in the early universe are one of our most promising signal channels of BSM physics; however, existing methods for predicting these signals are limited to weakly-coupled theories. In this talk, I present the quasi-stationary effective action, a new non-perturbative formalism for false vacuum decay that integrates over local fluctuations in field space...
Electroweak symmetric balls are macroscopic objects with electroweak symmetry restored inside. Such an object can arise in models where dark sectors contain monopole or non-topological soliton with a Higgs portal interaction to the Standard Model. It could be produced in the early universe via phase transition or parametric resonance, accounting for all dark matter. In a scenario where the...
Electroweak symmetry non-restoration up to high temperatures well above the electroweak scale has intriguing implications for (electroweak) baryogenesis and early universe thermal histories. In this talk, I will discuss such a possible fate of the electroweak symmetry in the early universe and a new approach to realize it, via an inert Higgs sector that couples to the Standard Model Higgs as...
In the last few years, the notion of symmetry has been enlarged to "generalized symmetry" or "higher-form symmetry" and these more generalized symmetries have played a critical role in deepening our understanding of QFT, notably IR phases of QFT. In this talk, I will discuss a various ways of coupling the axion-Maxwell theory to a topological field theory (TQFT). Contrary to a common wisdom, I...